
I. Introduction __2
a. X3D___2

b. Tutorial -- Generating Initial Grids Using the X3D Command Language:_______________________3
1. Define mesh objects ___ 3
2. Define an enclosing volume ___ 4
3. Define interior interfaces __ 5
4. Divide the enclosing volumes into regions __ 7
5. Assign material types to the regions ___ 8
6. Distribute points within the volume ___ 9
7. Connect the points into tetrahedra __ 12

II. Mesh Objects__15
a. Mesh Object Definition__15

b. Command Interface__18

c. FORTRAN Interface___18

d. Mesh Object Connectivity ___20

III. X3D Commands:___24
a. Conventions__24

b. Alphabetic Listing of X3D Commands___26
 ADDMESH __ 26
 ASSIGN __ 26
 CMO ___ 26
 COPYPTS __ 34
 COORDSYS ___ 35
 DOPING __ 36
 DUMP __ 37
 EDIT ___ 37
 ELTSET __ 38
 EXTRACT __ 38
 FIELD __ 39
 FILTER ___ 41
 FINISH ___ 41
 GENIEE __ 41
 HELP __ 41
 HEXTOTET ___ 42
 INFILE ___ 42
 INPUT __ 42
 INTERSECT ___ 42
 LOG ___ 43
 MERGE __ 43
 MREGION __ 43
 OFFSETSURF ___ 44
 PSTATUS ___ 45
 PSET ___ 45
 QUADXY ___ 46
 QUADXYZ __ 46
 READ __ 47
 RECON ___ 47
 REFINE __ 47

2

 REGION __ 56
 REGNPTS __ 56
 RESETPTS __ 57
 RM __ 58
 RMMAT __ 59
 RMPOINT __ 59
 RMREGION ___ 59
 RMSPHERE ___ 59
 RMSURF ___ 60
 ROTATELN ___ 60
 ROTATEPT ___ 60
 RZ ___ 61
 RZBRICK ___ 62
 RZS __ 62
 SCALE ___ 63
 SEARCH ___ 64
 SETPTS __ 64
 SETTETS ___ 64
 SMOOTH ___ 65
 SURFACE __ 67
 SURFPTS ___ 70
 TRANS ___ 71
 ZQ ___ 71

IV. Interfacing User Routines to X3D__73
a. Building an executable and running X3D.___73

b. Issuing Commands from a user program.___74

c. Writing user commands___75

X3D REFERENCES: ___86

I . Introduction

a. X3D

X3D is a library of user callable tools that provide mesh generation, mesh optimization

and dynamic mesh maintenance in three dimensions for a variety of applications.

Geometric regions within arbitrarily complicated geometries are defined as

combinations of bounding surfaces, where the surfaces are described analytically or

as collections of points in space. A variety of techniques for distributing points within

these geometric regions are provided. Mesh generation uses a Delaunay

tetrahedralization algorithm that respects material interfaces and assures that there

are no negative coupling coefficients. The data structures created to implement this

algorithm are compact and powerful and expandable to include hybrid meshes as well

as tetrahedral meshes.

3

Mesh refinement and smoothing are available to modify the mesh to provide more

resolution in areas of interest. Mesh refinement adds nodes to the mesh based on

geometric criteria such as edge length or based on field variable criteria such change

in field. Mesh smoothing moves nodes to adapt the mesh to field variable measures,

and, at the same time, maintains quality element shape. Mesh elements may become

distorted as mesh nodes move during a time dependent simulation or are added as a

result of refinement operations. Mesh reconnection via a series of edge flips will

maintain the non-negative coupling coefficient criterion of the mesh while eliminating

highly distorted elements.

An additional requirement of time dependent simulations is that as interface surfaces

move, the corresponding region definitions must respond dynamically. As surfaces

collide, the mesh must respond by merging points and effectively squeezing out the

material between the colliding surfaces. X3D provides the necessary tools for time

dependent simulations.

b. Tutorial -- Generating Initial Grids Using the X3D Command Language:

The steps involved in generating three dimensional grids in the X3D command

language are:

1. Define mesh objects.

2. Define an enclosing volume.

3. Define interior interfaces.

4. Divide the enclosing volume into regions.

5. Assign material types to the regions.

6. Distribute points within the volume.

7. Connect the points into tetrahedra

Detailed descriptions of the X3D commands are given in Section III. This tutorial

covers just the commands needed to generate a simple grid. The tutorial will explain

how to generate a grid in a unit cube containing two materials separated by a plane.

1. Define mesh objects

Define all Mesh Objects to be used in this problem using the cmo/create command.

The cmo/create command establishes an empty Mesh Object data structure (see

Section II.a for a description). For this example we will need only a single 3D Mesh

Object:

4

* create a 3D tetrahedral mesh object and name it 3dmesh

cmo/create/3dmesh/

 2. Define an enclosing volume

Define an enclosing volume using the surface command. Since we are defining an

exterior boundary, the boundary type is reflect. The next item of information needed

is the geometry of the volume; some common geometry types are box, cylinder,

sphere. Geometry types, box and sphere, define closed volumes; whereas a cylinder

is open on both ends and must be capped by planes. Along with the geometry type,

the extent of the volume is defined by specifying for the box its corners, or for the

cylinder its radius and end point of its axis of rotation. The enclosing volume must be

convex. Complicated enclosing volumes can be described by their bounding surfaces

including planes and sheets . Some simple examples of enclosing volumes are:

* unit cube

surface/cube/reflect/box/0.0,0.0,0.0/1.0,1.0,1.0/

(0,0,0)

(1,1,1)

x-axis

z-axis
y-axis

cube

* cylinder whose axis is the x axis with radius 1 and height 1

surface/cyl_vol/reflect/cylinder/0.,0.,0./1.,0.,0./1./

surface/end1/reflect/plane/0.,0.,0./0.,0.,1./0.,1.,1./

surface/end2/reflect/plane/1.,0.,0./1.,0.,1./1.,1.,1./

5

x-axis

y-axis

cyl_vol
(0,0,0)

(1,0,0)

hollow cylinder

x-axis

z-axis

cyl_vol
(0,0,0)

(1,0,0)

capped cylinder

end1
end2

3. Define interior interfaces

Interfaces are defined with the surface command. In this case the boundary type is

intrface. If the command defines a volume (e.g. box, cylinder) then the interface is the

surface of the volume defined. If the command defines a plane or sheet then the

interface is the plane or sheet. It is important to remember that planes are infinite and

that the order of points specifying the plane determines a normal to the plane in the

usual right-hand-rule sense (see Section III.a.9). This direction is important in

determining regions. In order to divide the unit cube defined above in half vertically,

define a plane by:

surface/cutplane/intrface/plane/0.,0.,.5/1.,0.,.5/1.,1.,.5/

The normal to this plane points in the positive z direction.

6

(0,0,0)

(1,1,1)

x-axis

z-axis

cube

(0,0,.5)

cutplane

(1,1,.5)

'cube' bisected by the infinite plane 'cutplane'

Interfaces must not be coincident with reflective boundaries. For example to embed a

rectangle inside a cube, it is necessary to extend the ends of the rectangle beyond the

cube to avoid coincident reflective and interface surfaces:

surface/cube/reflect/box/0.0,0.0,0.0/1.0,1.0,1.0/

surface/rect/intrface/box/-0.1,0.5,0.2/1.1,0.6,0.5/

(0,0,0)

(1,1,1)

x-axis

z-axis

cube

rect

'cube' with embedded 'rect', 'rect' extended
beyond planar surfaces of 'cube' to avoid
coincident interface and reflective surfaces

7

4. Divide the enclosing volumes into regions

The region command is used to divide the enclosing volume into regions. The

operators lt, le, gt, and ge are applied to previously defined surfaces according to the

following rules.

lt -- if the surface following is a volume then lt means inside not including the

surface of the volume. If the surface is a plane or a sheet lt means the space on

the side of the plane or sheet opposite to the normal not including the plane or

sheet itself.

le -- if the surface following is a volume then le means inside including the

surface of the volume. If the surface is a plane or a sheet le means the space

on the side of the plane or sheet opposite to the normal including the plane or

sheet itself.

gt -- if the surface following is a volume then gt means outside not including the

surface of the volume. If the surface is a plane or a sheet gt means the space

on the same side of the plane or sheet as the normal not including the plane or

sheet itself.

ge -- if the surface following is a volume then ge means outside including the

surface of the volume. If the surface is a plane or a sheet ge means the space

on the same side of the plane or sheet as the normal including the plane or

sheet itself.

The operators or, and, and not applied surfaces mean union, intersection and

complement respectively. The operators or, and, and not applied to relational

operators are the normal logical operators. Parentheses are used for nesting. Spaces

are required as delimiters to separate operators and operands. To define the two

regions created by the plane bisecting the unit cube:

region/top/ le cube and gt cutplane /

region/bottom/ le cube and le cutplane /

The region bottom contains the interface cutplane; top contains none of the interface.

Interior interfaces must be included in one and only one region.

If a region touches an external boundary, include the enclosing volume in region and

mregion commands. For example, the regions top and bottom are enclosed in the

volume cube

8

(0,0,0)

(1,1,1)

x-axis

z-axis

top

(0,0,.5)

(1,1,.5)

'cube' consisting of two geometric regions: 'top' and 'bottom'

bottom

cutplane

5. Assign material types to the regions

Assign materials to regions using the mregion command. This command has similar

syntax to the region command except that the interface should not be assigned to any

material region. To assign two materials, mattop and matbot, to the regions top and

bottom:

mregion/mattop/ le cube and gt cutplane /

mregion/matbot/ le cube and lt cutplane /

9

(0,0,0)

(1,1,1)

x-axis

z-axis

mattop

(0,0,.5)

(1,1,.5)

'cube' containing two materials: 'mattop' and 'matbot'

matbot

cutplane

6. Distribute points within the volume

Points are distributed within regions using Cartesian, cylindrical or spherical

coordinates by constructing rays that travel through regions and distributing points

along these rays. For this example, points are distributed using Cartesian coordinates.

The rays are specified by defining a set of points and a plane. For each point in the

set, a ray is constructed normal to the plane passing through the point. In general rays

are constructed in sets, each set is specified by a single plane and a set of points. The

rz command is used to create the points. The regnpts command is used to specify the

plane, to specify the region, and to specify the number of points to be distributed along

the rays. The points and the plane should lie outside the enclosing volume and on

opposite sides. The normal to the plane should point toward the point. As rays are

created, if they do not pass through the specified region, no points are distributed.

Points may be spaced evenly along the ray or they may be spaced according to a

ratio. The following commands will place points in the unit cube.

* create 25 points (5x5x1) in a plane above the unit cube

* place points on the boundaries in the x and y directions (1,1,0)

rz/xyz/5,5,1/0.,0.,1.1/1.,1.,1.1/1,1,0/

* give the points defined by the rz command the name, rayend

pset/rayend/seq/1,0,0/

10

(0,0,0) x-axis

z-axis

cube

x x x x x

x x x x x

x x x x x
x x x x x

x x x x x
'rayend'
points

* create rays between points in rayend and the plane below the cube

* distribute 3 points along these rays in the region top

* add one point at the upper external boundary for each ray

* will get 4 points total along each ray in region top

* "pset,get,rayend" refers to all the points named rayend

* the three points: (0.,0.,-.1), (0.,1.,-.1), (1.,1.,-.1)

* define a plane whose normal points toward the rayend points

regnpts/top/3/pset,get,rayend/xyz/0.,0.,-.1/0.,1.,-.1/1.,1.,-.1/0,0/

rayend points
o
o
o

o

o
o
o

o

o
o
o

o

o
o
o

o

o
o
o

o

base plane

upper
boundary of
'cube'

x x x x x

lower
boundary of
'cube'

'cutplane'
interface

region
'top'

rays

front face of cube showing one row of 'rayend' points and
one set of 5 rays. Points are distributed in the region 'top'.

11

* distribute 4 points along these rays in the region bottom

* add one point at the lower external boundary for each ray

* add one point at the material interface for each ray since

* bottom contains the interface - a total of 5 points for each ray.

* points will be distributed such that the ratio of distances between

* any two consecutive pairs of points is 0.6 traveling from the source

* of the ray (the plane) to the ray end.

regnpts/bottom/4/pset,get,rayend/xyz/0.,0.,-.1/0.,1.,-.1/1.,1.,-.1/1,.6/

rayend points
o
o
o

o

o
o
o

o

o
o
o

o

o
o
o

o

o
o
o

o

base plane

upper
boundary of
'cube'

x x x x x

lower
boundary of
'cube'

'cutplane'
interface

rays

front face of cube showing one row of 'rayend' points and
one set of 5 rays. Points are distributed in the region 'bottom'.

region
'bottom'

*

*

*

*
*
* *

*

*

*
*
* *

*

*

*
*
* *

*

*

*
*
* *

*

*

*
*
*

Other versions of the regnpts are appropriate for cylindrical and spherical geometries.

For cylindrical geometries the rz command specifies points in a cylindrical shell

outside the volume. The regnpts command specifies a line (usually the cylinder axis),

and the rays are constructed normal to this line and containing one of the rz points.

For spherical geometries the rz command specifies points in a spherical shell outside

the volume. The regnpts command specifies a point (usually the center of the sphere)

from which rays are constructed to the rz points.

If there are other regions that intrude on the region in which points are being

distributed, then the effect is that of laying down a background distribution of points

and erasing those that occur in the interior of the intruding regions.

12

7. Connect the points into tetrahedra

The mesh designer may use the following set of command to connect the points into a

tetrahedral mesh:

* eliminate coincident or nearly coincident points

* 1,0,0 means consider all points

filter/1,0,0/

* rayend points are set to invisible (dud is the code for invisible)

* they were used as end points of the rays in the regnpts command

zq/itp/pset,get,rayend/dud/

* assign material colors to the points

* identify points that are on material interfaces

* identify constrained points

setpts

* connect the points into a Delaunay tetrahedral mesh

* do not connect across material interfaces - add points if necessary to resolve

material interfaces

search

* set element (tetrahedral) type

* spawn child points at material interfaces

settets

* dump mesh to some output form

dump/gmv/filename

* terminate processing
finish

13

 The complete input for the tutorial is:
* create a 3D tetrahedral mesh object and name it 3dmesh
cmo/create/3dmesh/
* unit cube
surface/cube/reflect/box/0.0,0.0,0.0/1.0,1.0,1.0/
* define z=.5 plane as interface
surface/cutplane/intrface/plane/0.,0.,.5/1.,0.,.5/1.,1.,.5/
*define geometric regions
region/top/ le cube and gt cutplane /
region/bottom/ le cube and le cutplane /
* define material regions
mregion/mattop/ le cube and gt cutplane /
mregion/matbot/ le cube and lt cutplane /
* create 25 points (5x5x1) in a plane above the unit cube
* place points on the boundaries in the x and y directions (1,1,0)
rz/xyz/5,5,1/0.,0.,1.1/1.,1.,1.1/1,1,0/
* give the points defined by the rz command the name, rayend

14

pset/rayend/seq/1,0,0/
* create rays between points in rayend and the plane below the cube
* distribute 3 points along these rays in the region top
* add one point at the upper external boundary for each ray
regnpts/top/3/pset,get,rayend/xyz/0.,0.,-.1/0.,1.,-.1/1.,1.,-.1/0,0/
* distribute 4 points along these rays in the region bottom
* add one point at the lower external boundary for each ray
* add one point at the material interface for each ray since
* bottom contains the interface - a total of 5 points for each ray.
* points will be distributed such that the ratio of distances between
* any two consecutive pairs of points is 0.6 traveling from the source
* of the ray (the plane) to the ray end.
regnpts/bottom/4/pset,get,rayend/xyz/0.,0.,-.1/0.,1.,-.1/1.,1.,-.1/1,.6/
* eliminate coincident or nearly coincident points
* 1,0,0 means consider all points
filter/1,0,0/
* rayend points are set to invisible (dud is the code for invisible)
* they were used as end points of the rays in the regnpts command
zq/itp/pset,get,rayend/dud/
* assign material colors to the points
* identify points that are on material interfaces
* identify constrained points
setpts
* connect the points into a Delaunay tetrahedral mesh
* do not connect across material interfaces -
* add points if necessary to resolve material interfaces
search
* set element (tetrahedral) type
settets
* dump mesh to some output form
dump/gmv/filename
* terminate processing
finish

15

II. Mesh Objects

a. Mesh Object Definition

The data structure which contains the information necessary to define a mesh is called

a Mesh Object. A Mesh Object consists of attributes and parameters. There is a

default template for a Mesh Object which consists of the following attributes:

name (mesh object name)

nnodes (number of nodes in the mesh)

nelements (number of elements in the mesh, e.g. triangles, tetrahedra)

nfaces (number of unique topological facets in the mesh, e.g. number of

edges in 2D or number of element faces in 3D) -- (not used)

nedges (number of unique edges in mesh) -- (not used)

mbndry (value signifying that if the node number is greater that mbndry

then the node is a boundary node)

ndimensions_topo (topological dimensionality,1, 2 or 3, i.e. a non-planar

surface would have ndimensions_topo = 2 and

ndimensions_geom = 3.)

ndimensions_geom (1, 2 or 3 for dimension of geometry)

nodes_per_element

edges_per_element

faces_per_element (topological number of facets per element (i.e. in

1D this number is always 2, for 2D use the number of edges of the

element, for 3D use the number of faces of the element.)

isetwd (integer array containing pset membership information, see pset

command definition)

ialias (integer array of alternate node numbers, i.e. for merged points)

imt1 (integer array of node material)

itp1 (integer array of node type - type ≥ 20 node will be invisible)

 point type name description
0 int Interior
2 ini Interface
3 vrt Virtual
8 vif Virtual + interface + free
9 alb Virtual + Interface + free + reflective

10 rfl Reflected boundary node
11 fre Free boundary node
12 irb Interface node on reflected boundary

16

13 ifb Interface node on free boundary
14 rfb Node on intersection of free boundary and

reflective boundary
15 irf Interface node on intersection of free boundary

and reflective boundary
16 vrb Virtual node on reflective boundary
17 vfb Virtual node on free boundary
18 vfb Virtual node on free + reflective boundary
19 vit Virtual + interface node on reflective boundary
20 mrg Merged node
21 dud Dudded node
41 par Parent node

icr1 (integer array of constraint numbers for nodes)

isn1 (integer array of child, parent node correspondence)

Points on material interfaces are given point type 41 (parent). One

child point is spawned for each material meeting at the parent

point. The isn1 field of the parent point will contain the point

number of the first child point. The isn1 field of the first child will

contain the point number of the next child. The isn1 field of the last

child will contain the point number of the parent. The point types

of the child points will be 2, 12 or 13 depending on whether the

interface point is also on an exterior boundary. This parent, child

relationship is established by the settets command.

ign1 (integer array of generation numbers for nodes)

xic, yic, zic (real arrays of node coordinates)

itetclr (integer array of element material)

itettyp (geometry of element)

 name value description
ifelmpnt 1 point
ifelmlin 2 line
ifelmtri 3 triangle
ifelmqud 4 quadrilateral
ifelmtet 5 tetrahedron
ifelmpyr 6 pyramid
ifelmpri 7 prism
ifelmhex 8 hexahedron
ifelmhgb 9 hybrid
ifelmply 10 polygon

xtetwd (real array containing eltset membership information, see eltset

command definition)

itetoff (index into itet array for an element)

jtetoff (index into jtet array for an element)

17

itet (integer array of node vertices for each element)

jtet (integer array of element connectivity)

The default Mesh Object can be expanded by adding user defined attributes

(see cmo/addatt). There are four special user defined attributes: velocity,

density, pressure and energy; these attributes have pre-defined names which

are stored as Mesh Object parameters. Most Mesh Object parameters are

relevant only to the physics model, and the physics parameters will be

documented in a later volume (a full list of all parameters will appear in the

response to a help command under the heading: The CMO commands). The

parameters relevant to grid generation are:

 Name Default Description

densname dens Name of the user added density attribute

presname pres Name of the user added pressure attribute

enername ener Name of the user added energy attribute

velname vels Name of the user added velocity attribute

epsilon 10.e-15

epsilonl 10.e-8 Minimum edge length

epsilona 10e-8 Minimum facet area

epsilonv 10e-8 Minimum element volume

ipointi 0 First point added by last generate step

ipointj 0 Last point added by last generate step

ipoints 0 Point stride of last generate step

var0,...var9 0 Available for user

itypconv_sm Smoothing parameters see smooth

maxiter_sm

tolconv_sm

The value of parameters can be changed by the assign command.

X3D will add attributes to the mesh object in certain instances. For example, if

there are any constrained surfaces, reflect, virtual or intrcons types, the

following attributes are added to the mesh object:

NCONBND number of combinations of constrained

surfaces

ICONBND(50,NCONBND)

18

ICONBND(1,i) number of surfaces contributing to the

ith constraint

ICONBND(2,i) degree of freedom of the ith constraint

ICONBND(2+j,i) Surface number of the jth surface

contributing to the ith constraint

In order to determine which constraint entry applies to node ip, retrieve the

value i=icr1 (ip), i.e. ICONBND(1, icr1(ip)) gives the number of surfaces that

ip is ‘on’. If icr1(ip) is zero there is no constraint on that node.

TENSOR Dimension of XCONTAB

XCONTAB(TENSOR,NPOINTS) This is a 3x3 matrix which multiplied by

the velocity vector, constrains the

velocity to the number of degrees of

freedom possessed by the node.

b. Command Interface

The default Mesh Object is named 3dmesh For simple problems the user must

supply only a cmo/create/mesh_object_name command. There is no limit on

the number of Mesh Objects that can be defined, but at any time there is only

one 'current' or 'active' Mesh Object. For more advanced problems, such as

those requiring more than one Mesh Object or requiring extensions to the basic

Mesh Object template, the Mesh Object(s) is(are) manipulated via the cmo

commands which are described in the next section. For example, additional

user defined attributes may be added to a Mesh Object by using the cmo/addatt

command, or the 'active' Mesh Object can be changed using the cmo/select

command.

c. FORTRAN Interface

Mesh Object attribute data are accessed through a set of subroutines. An example of

accessing an existing Mesh Object and creating a new mesh object is given in

19

Section IV; that example should be used as a template when operating with Mesh

Objects. The subroutine set includes:

cmo_get_name retrieve active mesh object name

cmo_set_name set active mesh object name

cmo_get_info retrieve mesh object data

cmo_set_info set mesh object data

cmo_newlen adjust mesh object memory allocation

Only data from the active Mesh Object may be retrieved; calling cmo_set_name will

make the Mesh Object active. Scalar quantities are retrieved and stored using

cmo_get_info and cmo_set_info. Vector quantities are referred to by their

pointers. The length of the vectors is calculated internal to X3D based on the scalar

mesh object variables. Memory allocation for a new mesh object or for a mesh object

which will grow in size is accommodated by setting the appropriate scalars for the

Mesh Object and calling cmo_newlen. cmo_set_info with the new number of

elements and/or nodes and cmo_newlen must be called before adding to the size of a

Mesh Object.

Mesh object parameters are retrieved with the get_info_c subroutine.

See V.e.1 for a list of . mesh object subroutines .

20

d. Mesh Object Connectivity

The Mesh Object attributes, itettyp, itetoff, jtetoff, itet, and jtet along with the

variables contained in the include file local_element.h completely describe the mesh

connectivity. The following discussion is based on the concept of local facets and

local edges for an element. The nodes comprising a given element are always

specified in a well-defined order; hence when one references the 'second facet' of an

element, one references a pre-defined set of points. Consider a tetrahedral element,

with nodes labeled as in the diagram:

I

I

I

I

1

2

3

4

The points are oriented so that the triple product I1I2 × I1I3 ⋅ I1I4 is positive, and the

volume of the tet is one-sixth of the triple product. The local facets are defined as

follows:

F1 = I2 I3 I4
F2 = I1 I4 I3
F3 = I1 I2 I4
F4 = I1 I3 I2

The local edges for a tetrahedral are defined as follows:
E1 I1 I2
E2 I1 I3
E3 I1 I4
E4 I2 I3
E5 I2 I4
E6 I3 I4

Similarly, local facets and local edges are defined for all element types.

itettyp(it) gives the element type of element it.

21

itetoff(it) gives the offset to the first node in element it.

itet(itetoff(it)+j) gives the jth node of element it.

nelmnen(itettyp(it)) gives the number of nodes of element it.

To loop through all the nodes of all elements in the mesh:

do it=1,ntets

do j=1,nelmnen(itettyp(it))

k=itet(itetoff(it)+j)

enddo

enddo

nelmnef(itettyp(it)) gives the number of facets of element it.

ielmface0(iface,itettyp(it)) gives the number of nodes on facet iface of element

it.

ielmface1(local_node,iface,itettyp(it)) gives the increment to the node number

(local_node) on facet iface of element it.

To loop through all the nodes, k, of all elements in the mesh by facets:

do it=1,ntets

do i=1,nelmnef(itettyp(it))

do j=1,ielmface0(i,itettyp(it))

k=itet(itetoff(it)+

ielmface1(j,i,itettyp(it)))

enddo

enddo

enddo

nelmnee(itettyp(it)) gives the number of edges of element it.

ielmface2(inode,iface,itettyp(it)) gives the edge number associated with inode

on facet iface of element it.

ielmedge1(1|2,iedge,itettyp(it)) gives the node offset associated with edge

iedge of element it.

To loop through all pairs of edge nodes (i1,i2) of all elements in the mesh :

do it=1,ntets

 do i=1,nelmnee(itettyp(it))

i1=itet1(itetoff(it)+

ielmedge1(1,i,itettyp(it)))

i2=itet1(itetoff(it)+

 ielmedge1(2,i,itettyp(it))

enddo

22

enddo

To loop through all pairs of edge nodes (i1,i2) of all elements in the mesh by

facets:

do it=1,ntets

do i=1,nelmnef(itettyp(it))

do j=1,ielmface0(i,itettyp(it))

ie=ielmface2(j,i,itettype(it))

i1=itet(itetoff(it)+

ielmedge1(1,ie,itettyp(it)))

i2=itet(itetoff(it)+

ielmedge1(2,ie,itettyp(it)))

enddo

enddo

enddo

jtet(itetoff(it)+j) gives the element number and local facet number of the

neighbor to element it, facet j.

To loop find all neighbors of elements (jt is neighbor element number, jf is facet

of neighboring element), (mbndry is the value added to jtet if element it

is on a boundary or interface; the jtet value of an element it with facet j on

an exterior boundary will be exactly mbndry; the jtet value of an element

it with facet j on an interior interface will be mbndry + the jtet value

calculated from the neighboring element number and neighbor element

local_facet number):

c set number of faces per element for this mesh object

call cmo_get_info(‘faces_per_element’,cmo_name,

nef_cmo,ilen,ity,ics)

do it=1,ntets

do i=1,nelmnef(itettyp(it))

c check if element face is on an external boundry

if(jtet1(jtetoff(it)+i).eq.mbndry) then

jt=0

jf=0

c check if element face is øn an internal boundry

elseif(jtet1(jtetoff(it)+i).gt.mbndry) then

jt=1+(jtet1(jtetoff(it)+i-mbndry-1))

/nef_cmo

23

jf=jtet1(jtetoff(it)+i)-mbndry-1)+(

nef_cmo*(jt-1)

C Volume element

else

jt=1+(jtet1(jtetoff(it)+i)-1/nef-cmo

jf=jtet1(jtetoff(it)+i)-nef-cmo*(jt-1)

endif

enddo

enddo

24

III. X3D Commands:

a. Conventions

Following in Section III.b is list of the X3D commands. These commands are given in

alphabetic order. Conventions that apply to all commands include:

1. Lines are a maximum of 80 characters long, identifiers are a maximum of 32

characters long.

2. Continuation lines are signaled by an "&" as the last character of a line to be

continued. A command can be up to 1024 characters long.

3. Delimiters are comma, slash, equal sign, or blank. (',' '/' '='' ').

Blanks on either side of other delimiters are ignored. Leading blanks are ignored.

Commas are usually used for parameters that belong to the same logical set such as

first point, last point, stride. Slashes are usually used to separate sets of

parameters.

4. The three parameters: first point, last point, stride can have integer

values which refer to actual sequential point numbers or they can have the character-

string values:

pset, get, name where name has been defined by a previous pset command. The

triplet: 1, 0, 0 refers to all points. The triplet: 0, 0, 0 refers to the set of points defined in

the last geometry command.

5. Commands should be typed in lower case, however names are case sensitive.

In the command description that follows certain symbols have special meaning.

[] surround optional parameters

 | signifies alternate choices

, or / separates parameters

6. Courier font is used for variable names such as ifirst.

bold is used for literals such as xyz.

7. Comments are identified by * in the first column. Comments are parsed; avoid

using special characters especially ‘&’ in comments.

8. All names (surface, region, pset,...) should be limited to 32 characters.

9. The right hand rule is used to determine normals to planes and to sheet surfaces.

The first two points determine the first vector and the first and third point determine the

second vector. By curling the fingers of the right hand from the first vector toward the

second vector, the right thumb will point in the direction of the normal.

25

1

2

3

direction
of
normal

10. To separate commands on the same line use a semicolon (;).

11. Three coordinate systems are used.

xyz refers to the standard Cartesian coordinate system

rtz refers to a cylindrical coordinate system aligned along the z-axis, where r is

the radius measured from the zaxis, t (theta) is the angle measured in the xy-

plane from the positive x-axis toward the positive y-axis and z is the height

measured from the xy-plane.

rtp refers to a spherical coordinate system, where r is the radius measured from

the origin, p (phi) is the angle in the xy-plane measured from the positive x-axis

toward the positive y-axis, t (theta) is the angle measured from the positive z-axis

to the positive y axis.

r

z

x-axis

y-axis

z-axis

θ

r

x-axis

y-axis

z-axis

θ

φ

cylindrical coordinates
rtz
 position of
determined by
r radius
t theta (angle from x-axis)
z height

spherical coordinates
rtp
position of
determined by
r radius measured from origin
t theta (measured from positive z-axis)
p phi (measured from positive x-axis)

26

b. Alphabetic Listing of X3D Commands

 ADDMESH

This routine glues two meshes together at their common interface to produce a third

mesh.

FORMAT:

addmesh / glue / mesh3 / mesh1 / mesh2 /

 ASSIGN

Assign a value to a code variable.

FORMAT:

assign/category_name/column/variable_name/value.

EXAMPLES:

assign/-def-/-def-/epsilonl/1.e-4/

 CMO

The cmo command operates on the Mesh Object (MO). There can be many Mesh

Objects in the code for a given problem. Only one of these Mesh Objects may by the

Current Mesh Object. There is also one Default Mesh Object which is used as

the template for generating new Mesh Objects.

FORMAT:

cmo/addatt /mo_name/att_name/type/rank/length/interpolation/

persistence/io/value/

compress/mo_name/

copy/mo_name/master_mo/

create/mo_name/npoints/nelements/mesh_type/

create/mo_name/npoints/nelements/ndimensions_geom/ndimensions_topo/

nodes_per_element/faces_per_element/edges_per_element/
delatt/mo_name/att_name/

derive/mo_name/master_mo/

length/mo_name/att_name/

list

memory/mo_name/number_nodes/number_elements/

27

modatt/mo_name/att_name/field_name/new_field/

move/mo_name/master_mo/

newlen/mo_name/

release/mo_name/

select/mo_name/

status/mo_name/

 verify/mo_name/

CONVENTION: As a result of any command that generates a new Mesh Object, the

newly generated Mesh Object becomes the Current Mesh Object.

RESERVED NAMES: The following names are reserved and may not be used for Mesh

Object names:

-cmo- the Current Mesh Object

-default- the Default Mesh Object

-all- all Mesh Objects or Attributes

-notset- Null name for Mesh Object

TYPES ,DEFAULTS and POSSIBLE VALUES:

 mo_name is type character

 att_name is type character

 mesh_type is type character

(tet,hex,pri,pyr,tri,qua,hyb)

 type is type character, default is VDOUBLE

(VDOUBLE, INT, VINT)

 rank is type character, default is scalar

(scalar,vector,tensor)

 length is type character, default is nnodes

(nelements, nnodes)

 interpolate is type character, default is linear

(copy, sequence, linear, log, asinh, max,

min, user,and,or,incmax)

 persistence is type character, default is temporary

(permanent, temporary)

 ioflag is type character, default is agx

(a, g, f, s, x, no -- for avs,gmv,fehms,sgi,x3d)

28

 default is type real, default is 0.0

 npoints is type integer, default is Default MO

 nelements is type integer, default is Default MO

 ndimensions_geom is type integer, default is Default MO

 ndimensions_topo is type integer, default is Default MO

 nodes_per_element is type integer, default is Default MO

 faces_per_element is type integer, default is Default MO

 edges_per_element is type integer, default is Default MO

addatt/mo_name/att_name/type/rank/length/interpolate/persistence/io/value/

mo_name required

att_name required

Adds the Attribute, att_name, to Mesh Object, mo_name. See the modatt

command for more details on the field variables.

Examples:

cmo/addatt/cmo1/boron1/VDOUBLE/scalar/nnodes/asinh/permanent/gx/1.0

 cmo/addatt/-cmo-/boron2/VDOUBLE/scalar/nnodes/asinh/permanent/gx/2.0

cmo/addatt/cmo1/boron3/VDOUBLE/scalar/nnodes/user/temporary/gx/3.0

cmo/addatt/-default-/boron/VDOUBLE/scalar/nnodes/asinh/temporary/no/3.

cmo/addatt/-default-/boron3

compress/mo_name/

mo_name is type character, default is -cmo-

Shortens all memory managed arrays for Mesh Object mo_name to their actual

lengths.

Examples:

cmo/compress/mo_tet2

cmo/compress/-cmo-

cmo/compress

cmo/compress/-all-

copy/mo_name/master_mo/

mo_name is type character, required.

master_mo is type character, default is '-cmo-'

29

Makes an exact copy of Mesh Object, master_mo, including all data. The output

Mesh Object, mo_name, will become the Current Mesh Object. If mo_name is

the same as master_mo nothing happens.

If mo_name exists it is over written.

Examples:

cmo/copy/mo_tet2/mo_tet1

cmo/copy/-cmo-/mo_tet1

cmo/copy/mo_tet2

cmo/copy/mo_tet2/-cmo-

create/mo_name/npoints/nelements/ tet|hex|pri|pyr|tri|qua|hyb/

 or

create/mo_name/npoints/nelements/ndimensions_geom/ndimensions_topo/

nodes_per_element/faces_per_element/edges_per_element/

Creates a new Mesh Object 'mo_name', which becomes the Current Mesh Object.

If a Mesh is created using the first (mesh_type) format, then values are supplied for the

other parameters as follows:
mesh ndimension ndimension nodes_per faces_per edges_per
name geom topo element element element

tet 3 3 4 4 6
hex 3 3 8 6 12
pri(sm) 3 3 6 5 9
pyr(amid) 3 3 5 5 8
tri(angle) 3 2 3 3 3
qua(d) 3 2 4 4 4
hyb(rid) 3 3 10 10 12

If mo_name exists nothing happens.

mo_name required.

Examples

cmo/create/mo_tet2

cmo/create/mo_tet2/0/0/hex

delatt/mo_name/att_name/

Deletes the attribute att_name from Mesh Object, mo_name. Will not delete an

attribute with a persistence of permanent

mo_name must be specified.

att_name must be specified.

30

Examples

cmo/delatt/mo_tet2/boron

cmo/delatt/-cmo-/boron

cmo/delatt/-default-/boron

cmo/delatt/-cmo-/-all- (this will delete all attributes with persistence of temporary)

derive/mo_name/master_mo/

mo_name is type character, required.

master_mo is type character, default is -cmo-

Uses Mesh Object, master_mo, as the template for deriving Mesh Object,

mo_name. Mesh Object, mo_name, will be an image of master_mo but will

contain no data. The output Mesh Object, mo_name, will become the Current

Mesh Object. If mo_name is the same as master_mo nothing happens. If mo_name

exists it is over written.

Examples:

cmo/derive/mo_tet2/mo_tet1

cmo/derive/-cmo-/mo_tet1

cmo/derive/mo_tet2

cmo/derive/mo_tet2/-cmo-

cmo/derive/-default-/-cmo-

cmo/derive/mo_tet2/-default-

cmo/derive/-default-/mo_tet1

length/mo_name/att_name/

mo_name is type character, default is -all-

att_name is type character, default is -all-

Returns the memory length of attribute att_name for Mesh Object, mo_name.

Examples:

cmo/length/mo_tet2/boron

cmo/length/-cmo-/boron

cmo/length/-default-/boron

cmo/length/-cmo-/-all-

cmo/length/mo_tet2/-all-

cmo/length

31

cmo/length/-all-/-all-

cmo/length/-all-/boron

list

Returns the name of the Current Mesh Object and a list of all defined Mesh

Objects

Examples:

cmo/list

memory/mo_name/number_nodes/number_elements/

Allows the user to preset the size of the memory managed arrays for Mesh Object,

mo_name.

mo_name required.

number_nodes required.

number_elements required.

Examples:

cmo/memory/mo_tet2/1000/10000

cmo/memory/-cmo-/1000/10000

modatt/mo_name/att_name/field_name/new_field/

Modifies the field field_name for attribute att_name in Mesh Object mo_name.

mo_name required.

att_name required.

field_name is type character, required

new_field is the type of the field, required

Field_names (may be lower or upper case):

name - (character) Attribute name

type - (character) Attribute type:

INT- Integer

VINT - Vector of integer

VDOUBLE - Vector of real*8

rank - (character) Attribute rank (must be an attribute for this Mesh object)

length - (character) Attribute length (must be an attribute for this Mesh object)

interpolation - (character) Interpolation option:

32

constant - Constant value

sequence - Next is previous plus 1

copy - Copy values

linear - Linear interpolation

user - User provides

log - Logarithmic interpolation

asinh - Asinh interpolation

persistence - (character) Attribute persistence:

permanent - Can not be deleted

temporary - Temporary attribute

ioflag - (character) Attribute IO flag:

a - Put this attribute on avs dumps

g - Put this attribute on gmv dumps

 f - Put this attribute on fehms dumps

s - Put this attribute on sgi dumps

x - Put this attribute on x3d dumps

no - Ignore this attribute

default (real) Attribute value

Examples:

cmo/modatt/mo_tet2/boron/length/nnodes

cmo/modatt/-cmo-/boron/length/nnodes

cmo/modatt/-cmo-/boron/default/10.0

cmo/modatt/-default-/boron/default/10.0

move/mo_name/master_mo/

mo_name is type character, required.

master_mo is type character, default is -cmo-'

Changes the name of Mesh Object, master_mo, to mo_name. The output Mesh

Object, mo_name, will become the Current Mesh Object. If mo_name is the

same as master_mo nothing happens. If mo_name exists it is over written.

Examples:

cmo/move/mo_tet2/mo_tet1

cmo/move/-cmo-/mo_tet1

cmo/move/mo_tet2

33

cmo/move/mo_tet2/-cmo-

newlen/mo_name/

mo_name is type character, default is -cmo-

Changes the length of all memory managed arrays for Mesh Object mo_name to the

proper length.

Examples:

cmo/newlen/mo_tet2

cmo/newlen/-cmo-

cmo/newlen

release/mo_name/

mo_name is type character, required.

Deletes the Mesh Object mo_name.

Examples:

cmo/release/mo_tet2

cmo/release/-cmo-

select/mo_name/

mo_name is type character, required.

Selects Mesh Object mo_name to be the Current Mesh Object. If mo_name does not

exist a new Mesh Object will be created using the Default Mesh Object as the

template.

Examples:

cmo/select/mo_tet2

status/mo_name/

mo_name is type character, default is '-all-'

Prints the status of Mesh Objects.

Examples:

cmo/status/mo_tet2

cmo/status/-cmo-

34

cmo/status

cmo/status/-all-

cmo/status/-default-

verify/mo_name/

mo_name is type character, default is '-all-'

Verifies that Mesh Object mo_name is consistent.

Examples:

cmo/verify/mo_tet2

cmo/verify/-cmo-

cmo/verify

cmo/verify/-all-

cmo/verify/-default-

 COPYPTS

Copy a point distribution. There are two distinct forms of this command. The first format is

designed to copy points from one mesh object into another. In this form if the names of

the source and sink mesh objects are omitted, the current mesh object will be used. The

copy may be restricted to a subset of points by including the source point information.

Points in the sink mesh object will be overwritten if sink_stride is not zero. Attribute

fields may be specified for both the source and sink mesh object. For example the x-

coordinate field in the source mesh object (xic) may be placed in the y-coordinate field of

the sink mesh object. Attribute values will be copied from the source mesh object to the

sink mesh object. The user is warned that these values might not make sense in their

new context.

The second form of this command is included for historic reasons: it duplicates points

within a mesh object including all the attributes of the points. Also note that if no sink

points or sink stride are specified, then the copied points are placed at the end of the data

arrays (see third FORMAT) otherwise the copied points are written over the existing

points starting at the 1st sink point. Note also that the first form of the command gives the

arguments sink first then source whereas the second for give the source then the sink.

FORMAT:

35

copypts/sink_cmo/source_cmo/1st_sink_point/sink_stride /

1st_source_point/last_source_point/source_stride

/sink_attribute/source_attribute

copypts/1st_source_point/last_source_point/source_stride/

1st_sink_point/sink_stride /

copypts /1st_point/last_point/stride/

EXAMPLES:

copypts/3dmesh/2dmesh /

Copy all points in 2dmesh to the end of the 3dmesh point list.

copypts/3dmesh/2dmesh/0,0/pset,get,mypoints/

Copy the point set named mypoints from 2dmesh to the end of 3dmesh point list.

copypts/3dmesh/2dmesh/100,4/pset,get,mypoints/boron/arsenic/

Copy the arsenic field from the point set named mypoints from 2dmesh replacing the

boron field at every fourth point beginning at point 100 in 3dmesh.

copypts/pset,get,mypoints/0,0/

Duplicate the point set named mypoints from the current mesh object and place the

duplicated points at the end of the point list.

copypts///0,0/pset,get,mypoints/

Duplicate the point set named mypoints from the current mesh object and place the

duplicated points at the end of the point list. Same effect as the example directly

above. The current mesh object is used since the fields are blank on the command

line

 COORDSYS

This routine defines a local coordinate system to be in effect until another coordinate

system is defined or the normal coordinate system is reset. The new coordinate system is

defined by specifying an origin, a point on the new x-z plane and a point on the new z-

axis. these points are specified in the normal coordinate system. the options available in

iopt are:

define define a new local coordinate system

normal return to the normal coordinate system

save save the current coordinate system for recall

restore recall the last saved coordinate system

FORMAT:

36

coordsys/iopt/x0,y0,z0/xx,xy,xz/zx,zy,zz/

where x0,y0,z0 is the location of the new origin, xx,xy,xz is a point on the new x-z

plane and zx,zy,zz is a point on the new z-axis. These points are defined with the

normal coordinate system, and used only with the define option.

 DOPING

Create doping profile for the grid.

A constant profile is invariant over the specified region with value xcon.

A gaussian profile contains a bounding box (x1,y1,z1) to (x2,y2,z2) where the peak

concentration will be. z1=z2 in 2D. The doping varies according to the gaussian

distribution:

doping = concentration * exp(-(L/std_dev)**2)

where L is the effective distance and can be represented as:

L = sqrt(dy**2 + (1/lateral_diffusion)*(dx**2 + dz**2))

where

dy = y-y1 (or y2 for that matter)

dx = x-x1 if x < x1 < x2

= 0 if x1 < x < x2

= x-x2 if x1 < x2 < x

dz similar to dx.

The table option reads in doping data that has been read into the mesh object,

cmo_table_name, as the attribute, att_table_name from a DATEX2.1 format file by a

previously issued read/datex command. The fields cmo_geometry and

table_geometry give the mapping from the domain on which the doping field was input

to the active mesh object domain. The values of these fields may be xy, yz, yx, xz, zx, zy

for 2-D geometries and xyz, xzy, yxz, yzx, zxy, zyx for 3-D geometries.

In all cases, field specifies the name of a defined attribute field in the active mesh

object.

FORMAT:

doping/constant/field/set|add|sub/ifirst,ilast,istride/xcon

doping/gaussian/field/set|add|sub/ifirst,ilast,istride/xyz | rtz |rtp/

x1,y1,z1/x2,y2,z2/lateral_diffusion/concentration/std_dev/

doping/table/field/set|add|sub/ifirst,ilast,istride/cmo_table_name/

att_table_name/linear|log|asinh/cmo_geometry/table_geometry/

EXAMPLE:

37

doping/constant/ric/set/pset,get,Silicon/-1.0e+15/

doping/gaussian/ric/add/pset,get,Silicon/xyz/

0.0,0.08,0.0/0.6,0.08,0.0/0.5/5.0e+18/0.225/

doping/table/pic/set/1,0,0/cmo1/pic/linear/xyz/xyz/

doping/table/Saturation /set/1,0,0/cmo_course/Saturation/

linear/zx/yx/

 DUMP

This command produces an output file from a Mesh Object. If the option is x3d, a restart

dump is made a subsequent read/x3d will restart the code at the state that the dump was

taken.

FORMAT:

dump/file_type/file_name/[cmo_name]/

valid file_types are: x3d, gmv, avs, chad, fehm, and datex

EXAMPLE:

dump/gmv/gmv.out/3dmesh/

dump/x3d/x3d.out/

 EDIT

Prints an edit of various quantities based on the value of the option argument, the point

limits, and/or a material specification. iopt specifies what to print as follows:

no value for iopt --edit of sums, averages, and extrema of position coordinates

(x,y,z), and of mesh object attribute fields

 two--gives same information as the default, but only for the two points specified.

 parts--gives a list of materials types, their names, count and sequence.

 points--lists up to 4 cell-center array values for a set of points. Possible array values

are: xic,yic,zic,or mesh object attribute name

FORMAT:

edit / iopt / ifirst,ilast,istride / material_#_or_name/

edit/ angular/ifirst,ilast,istride /material_#_or_name/xcen,ycen,zcen/

edit/ radial /ifirst,ilast,istride /material_#_or_name/xcen,ycen,zcen/

38

edit/ points /ifirst,ilast,istride /material_#_or_name/array1,array2 ,

array3,array4/
 EXAMPLE:

edit/ parts/

edit/

edit/points/pset,get,some+points/Silicon/xic,yic,zic/

 ELTSET

This command creates eltsets or element sets with membership criteria:

1. itetclr = , > , < value or other element attribute (added by cmo_addatt)

2. inclusive pset membership - all elements any of whose nodes is in pset

3. exclusive pset membership - all elements all of whose nodes are in pset

4. union, intersection, not, delete other eltsets

5. region or mregion membership

FORMAT:

eltset/eset_name/element_attribute_name/=|≠|<|>|≤|≥/value/

eltset/eset_name/union|inter|not|delete/eset_list/

eltset/eset_name/inclusive|exclusive/pset/get/pset_name/

eltset/eset_name/region|mregion/region_name|mregion_name/

EXAMPLE:

eltset/element_set1/itetclr/=/4

eltset/element_set2/inclusive/pset/get/point_set_1/

eltset/element_set3/region/upper_region/

 EXTRACT

This command produces a 2D mesh object from a 3D mesh object. A material interface, a

plane or an iso-surface may be extracted. A plane may be defined by three points in the

plane, by a vector normal to the plane, by three points on the axes of the space, or by the

coefficients of the plane equation ax+by+cz=d. An isosurface is defined by the value of

the surface and the mesh object field to test for this value. An interface is defined by the

material(s) bounding the interface. region1, [region2] are the material numbers or

the material region names whose interface is to be extracted. Use -all- to extract from

all interfaces. All variations of the command can be limited by the usual pset syntax. The

output 2D mesh object is cmoout, the input 3D mesh objects is cmoin.

The output MO will be oriented such that the outward normal of the plane that defines the

surface will point in the same direction as the normals for the triangles in the output MO. If

39

the command extracts on an isosurface, the output MO will be oriented such that the

normals for the triangles point in the direction of increasing field. If the command extracts

on an interface, the output MO triangles will be oriented the same as the triangles

extracted from region1 of the input MO. In the case of a plane extracted along all or a

portion of a material interface, only those points that lie inside the material (i.e.: away from

the direction of the normal) will be picked up. If the extraction is on a boundary, the

normal to the extraction plane must point out of the material in order for points to be

picked up.

FORMAT:

extract/plane/threepts/x1,y1,z1/x2,y2,z2/x3,y3,z3/

ifirst,ilast,istride/cmoout/cmoin

/ptnorm/x1,y1,z1/xn,yn,zn/ ifirst,ilast,istride/cmoout/cmoin

/axes/xv,yv,zv/ifirst,ilast,istride/cmoout/cmoin

/abcd/a,b,c,d/ ifirst,ilast,istride/cmoout/cmoin

/isosurf/var/value/ ifirst,ilast,istride/cmoout/cmoin

/intrface/region1/ ifirst,ilast,istride/cmoout/cmoin

/intrfac2/region1/region2/ifirst,ilast,istride/cmoout/cmoin

 FIELD

The FIELD Command option manipulates one or more specified fields in the Current

Mesh Object

• For all points in the specified point set, we compose the field value with the specified

composition function. The composition functions allowed are currently asinh

and log. So, for example, if 'i' is in the point set and asinh is the composition

function, we have the assignment:

field(i) = asinh(field(i)).

• The field/mfedraw command causes a binary dump of the specified fields to two files in

the mfedraw input format. mfedraw is a graphics package for visualizing moving

piecewise linear functions of two variables, such as those originally encountered in

Moving Finite Elements. The files are named 'root1.bin' and 'root2.bin', where 'root'

is the root file name argument. Because the graphics data are a function of two

variables, you must supply two orthonormal vectors (x1,y1,z1) and (x2,y2,z2) which

specify the graphics coordinate axes. More precisely, given 3D coordinates (x,y,z), the

40

2D graphic coordinates will then be (x*x1+y*y1+z*z1 , x*x2+y*y2+z*z2). So, for

example, the choice:

 /x1,y1,z1/x2,y2,z2/ = /1.,0.,0./0.,1.,0./
causes the 'z' coordinate to be discarded while the 'x' and 'y' coordinates are unchanged.

• The field/scale option scales the field values of the specified points. scale option

can take on the values normalize, multiply, and divide. If normalize is specified, we

multiply all the field values by factor/(fieldmax-fieldmin), where 'fieldmax' and 'fieldmin'

are the maximum and minimum values taken over the point set. This has the effect of

normalizing the field so that the new difference between the maximum and minimum

values is equal to factor. If multiply is specified, we multiply all the field values in the

point set by factor. If divide is specified, we divide all the field values in the point set by

factor.

• The field/volavg option, for all the members of the point set and for all specified fields,

replaces the point field values with values that represent the average of the field(s) over

the control volumes associated with the points. The averaging option specifies what

kind of control volume is to be used; the choices are voronoi and median. iterations is

an integer that specifies a repeat count for how many times this procedure is to be

performed on the field(s). The affect of this process is to broaden and smooth the features

of the field(s), similar to the effect of a diffusion process. The voronoi choice, unlike the

median. choice, produces a diffusive effect independent of mesh connectivity. However,

again unlike the median. choice, it requires that the mesh be Delaunay, or incorrect

results will occur.

FORMAT:

field/compose/composition function/ifirst,ilast,istride/field list/

field/mfedraw/root file name/x1,y1,z1/x2,y2,z2/field list/

field/scale /scale option/factor/ifirst,ilast,istride/ field list /

field/volavg/averaging option/iterations/ifirst,ilast,istride/field list/

EXAMPLE:

field/compose/asinh/1,0,0/pressure/

field/scale/normalize/4.0/set,get,region1/boron/

field/volavg/voronoi/4/1,0,0/boron/

41

 FILTER

Used to filter (delete) points that are too close (default==> tolerance=5.0E-06), closer

than the tolerance specified by the user, or duplicate points. This command records the

deleted points as dudded out points (itp=21) and places their position at infinity but does

not remove them from the point list. Note that at least one point must be specified in the

point sequence numbers (ifirst,ilast,istride) in order for this command to work

properly.

FORMAT:

filter / ifirst,ilast,istride / [tolerance]

 FINISH

Terminate processing this set of command and return to the driver routine.

FORMAT:

finish

 GENIEE

Generate element connectivity list(jtet) that gives neighbor information. Element

connectivity is maintained by X3D, but can also be g´˜´®å†´∂ by the user with this

command.

FORMAT:

geniee

 HELP

Access help package. help/command will return the command description.

help/code_variable will return the variable definition. help with no arguments will

return a list of commands and variables.

FORMAT:

help/[variable_name|command_name]

EXAMPLES:

help

42

help/surface

help/ipointi

 HEXTOTET

Create a tetrahedral grid from a hexahedral grid or a triangle grid from a quadrilateral

grid. ioption determines how the conversion is performed.

ioption = 2 ==> 2 triangles per quad, no new points.

ioption = 4 ==> 4 triangles per quad, 1 new point per quad.

ioption = 5 ==> 5 tets per hex, no new points.

ioption = 6 ==> 6 tets pet hex, no new points.

ioption = 24 ==> 24 tets pet hex, 7 new points(1 + 6 faces).

FORMAT:

hextotet/ioption/cmo_tet/cmo_hex/

EXAMPLES:

hextotet/24/cmo_tet/cmo_hex/

 INFILE

 INPUT

These commands instruct X3D to begin processing commands from a file. The infile

commands may be nested. Only the outermost set of commands should be terminated

with a finish command

FORMAT:

infile/file_name

input/file_name

 INTERSECT

Creates a new Mesh Object from the intersection of two existing Mesh Objects. The

existing Mesh Objects have to be topologically 2D and geometrically 3D. The created

Mesh Object will be topologically 1D and geometrically 3D. Node quantities for the new

Mesh Object will be create by interpolation on the corresponding node quantities of the

first input Mesh Object, cmo_1_in.

43

FORMAT:

intersect/cmo_out/cmo_1_in/cmo_2_in

 LOG

Turn the batch output file and tty output file off and on. The tty prints to and reads from the

user's screen. The batch file is the output file called outx3dgen. Default is on for both

files.

FORMAT:

log/bat|tty/on|off/

EXAMPLE:

log/tty/off

 MERGE

Merge two points together. On return, the first_point is the survivor unless

first_point may not be removed (a corner point for example), then the command

operates as if first_point and second_point have been interchanged. If there is no

confirmation of the merge, one or both of the points may be inactive, or the merge may be

illegal because the points are not neighbors or because this merge is disallowed by the

merge tables. Merging may trigger other merges by the reconnection step that follows the

merge.

FORMAT:

merge/first_point/second_point/

EXAMPLE:

merge/21,22/

 MREGION

Define a material region from a set of surfaces by logically combining the surface names

and region names. The operators lt, le, gt, and ge are applied to previously defined

surfaces according to the following rules.

lt -- if the surface following is a volume then lt means inside not including the surface

of the volume. If the surface is a plane or a sheet lt means the space on the side of the

plane or sheet opposite to the normal not including the plane or sheet itself.

44

le -- if the surface following is a volume then le means inside including the surface of

the volume. If the surface is a plane or a sheet le means the space on the side of the

plane or sheet opposite to the normal including the plane or sheet itself.

gt -- if the surface following is a volume then gt means outside not including the

surface of the volume. If the surface is a plane or a sheet gt means the space on the

same side of the plane or sheet as the normal not including the plane or sheet itself.

ge -- if the surface following is a volume then ge means outside including the surface

of the volume. If the surface is a plane or a sheet ge means the space on the same

side of the plane or sheet as the normal including the plane or sheet itself.

The operators or, and, and not applied to regions or surfaces mean union, intersection

and complement respectively. The operators or, and, and not applied to relational

operators are the normal logical operators. Parentheses are used for nesting. Spaces

are required as delimiters to separate operators and operands. Internal interfaces should

be excluded when defining material regions. (i.e. use lt and gt). External boundaries

should be included when defining material regions. If a material regions consists of more

than one region and the regions touch (i.e. share a region interface), then the region

interface is not a material interface -- all the points on the region interface are interior to

the material region. In this case use le or ge to include these region interface points in the

material region as interior points.

FORMAT:

mregion/material_region_name/region definition

EXAMPLES.:

mregion/mat1/ le box1 and (lt sphere1 and (lt plane1 or gt plane2)) /

mregion/mat2/ regiona or regionb /

 OFFSETSURF

Offsets triangulated surfaces in the direction of the surface outward normal, i.e., normal

surface motion. For each node a 'synthetic' unit outward normal N is computed based on

the weighted average angle of the normals of the triangles shared by that node. old_cmo

is the surface to be used in generating the offset surface. new_cmo is the name of the

new surface.

To add the nodes in the new surface to the main mesh object use the copypts command.

To add the new surface to the main mesh object use a surface command with new_cmo

as the sheet name (e.g. surface/s2d/bndy_type/sheet/new_cmo/).

45

dist is given in user coordinates (i.e. whatever units the old_cmo mesh object was

defined in.)

The new node coordinates, R_new, are computed using the formula:

R_new = R_old + dist * N_node

FORMAT:
offsetsurf/new_cmo/old_cmo/dist

 PSTATUS

 Saves, removes, retrieves, or replaces a specified set of points, usually the last set of

points defined by a generator command or the set of points defined by

ifirst,ilast,istride. Note that point sets must be specified in sequence in order for

this command to work properly.

FORMAT:

pstatus (Returns current point status counters)

pstatus /save/name/ifirst,ilast,istride/

(Saves the point status numbers, ifirst,ilast,istride under name)

pstatus /store/name/ifirst,ilast,istride/

(Overwrites what was in name with ifirst,ilast,istride

pstatus /delete/name (Deletes values from name)

pstatus /get/name (Retrieves values from name)

 PSET

Give a name to a selected set of points.

union, inter and not are logical operations on previously defined psets.

list lists all psets

delete deletes a previously defined pset

zq forms a pset from all points in ifirst,ilast,istride which have value flag for

the attribute point flag.

geom forms a pset from all points inside the box whose corners are xl,yl,zl and

xu,yu,zu relative to the geometry center at xc,yc,zc.

FORMAT:

pset/pset name/

seq/ifirst,ilast,istride

46

union|inter|not|delete/pset1[/pset2/.../psetn]

list

zq/point flag/ifirst,ilast,istride/flag

region/region name/ifirst,ilast,istride

geom/xyz/ifirst,ilast,istride/xl,yl,zl/xu,yu,zu/xc,yc,zc

EXAMPLE:

pset/apset/seq/1,0,0/ (give all points the name apset)

pset/apset/seq/0,0,0/ (give the last defined points the name apset)

pset/apset/union/pset1,pset2,pset3/ (combine psets)

pset//list/ (list all psets)

pset/apset/zq/imd/1,0,0/air/ (give all points in material region air the name apset)

 QUADXY

Define an arbitrary, logical quad of points in 2D(xy) space. nx and ny specify the number

of points in the x and y directions. The four corners of the quad are then listed in counter

clockwise order (the normal to the quad points is defined using the right hand rule and

the order of the points).

FORMAT:

quadxy/nx ,ny /x1,y1,z1/x2,y2,z2/x3,y3,z3/x4,y4,z4/

 QUADXYZ

Define an arbitrary, logical hexahedron of points in 3D(xyz) space. nx, ny and nz

specify the number of points in the x and y and z directions. The eight corners of the hex

are then listed as two sets of quads, each set of four nodes is given in counter clockwise

order . Points 1 to 4 specify one face of the hex, points 5 to 8 the corresponding face

opposite (point 5 is logically behind point 1, point 6 behind point 2 and so on.)

FORMAT:

quadxyz/nx ,ny,nz/x1,y1,z1/x2,y2,z2/x3,y3,z3/x4,y4,z4/x5,y5,z5/x6,y6,z6/x7,y7,z7

/x8,y8,z8/

47

 READ

This command reads in data into the active Mesh Object, replacing whatever data might

have been previously contained in the active Mesh Object. If the option is x3d the code

reads in a restart dump. The avs option includes the choice of reading in nodes,

elements and attributes by giving flags values of 1 (read) or 0 (skip) for the categories:

node_ flag, element_flag and attribute_flag. This option requires that the mesh object

name be specified.

FORMAT:

read/avs |dcm|datex|x3d/file_name

read/avs/file_name/cmo_name/node_ flag/element_flag/attribute_flag/

read/x3d/file_name/[dump_name/region_name/]

read/ngp/tet|hex|quad|tri/file_name/

EXAMPLE:

read/x3d/myfile

 RECON

This command flips connections in the mesh to get restore the Delaunay criterion. The

default is to add points on the boundaries if needed (yes). The option no specifies that no

points are to be added on the boundaries.

FORMAT:

recon/[yes |no/]

 REFINE

The refine command is used to create more elements when a criterion is specified.

These criteria are defined in the Grid Refinement and Derefinement Section which

follows.

The choice to refine is based on one of the following refine_criterion:

junction will refine object where field = crosses x refine

constant will refine object where field > xrefine

delta will refine object where ∆ field > xrefine

48

lambda will refine object where (field) < xrefine

maxsize will refine object where object > xrefine

maxsize refers to volume for tets, area for face, length for edges

minsize will derefine object where object < xrefine, (not implemented)

aspect will refine where aspect ratio < xrefine

addpts will refine explicitly by adding in a set of nodes

The refine_type specifies what object will be refined and how that object will be

refined:

tet will refine elements by placing a point in the center of the element.

face will refine facets by placing a point in the center of the facet.

edge will refine edges by placing a point on the midpoint of the edge.

faceedge will refine facets by refining all edges of the facet.

tetedge will refine elements by refining all edges of the element.

The field must refer to a previously defined attribute of the current Mesh Object.

The interpolation specifies how to interpolate the field to give field values to the new

nodes created. The implemented values are.

linear

log

asinh

The inclusion_flag specifies if refinement is an inclusive or an exclusive operation. If

for example, an edge refinement is specified restricted to a pset, then an edge is eligible

for refinement if either or both of the end points belong to the pset if the inclusion_flag

is set to inclusive. If the inclusion_flag is exclusive then both end points must be in

the pset. The implemented values are.

inclusive

exclusive

FORMAT:

refine/refine_criterion/field/interpolation/refine_type

/ifirst,ilast,istride /xrefine/inclusion_flag

EXAMPLES:

refine/maxsize///edge/pset,get,something/.25/

refine/constant/concentration/log/edge/1,0,0/25./inclusive

49

refine/addpts///tet/pset,get,newpoints/

Grid Refinement and Derefinement Criteria

The Refine command for the grid generation code X3D uses various criteria to tag grid

elements for refinement or derefinement. When utilizing unstructured grids generated by

X3D for applications such as solution of partial differential equations (PDE) for physical

systems, it is desirable to modify the grid in order to optimize it for the particular problem

based on several principles. The goal is to produce a better solution by creating better

grid elements in various regions of the domain of the PDE's. This can involve physical

criteria such as choosing smaller elements where physical variables are rapidly changing

or larger elements where the variables are relatively constant in order not to waste

computational effort. Grid elements can also be chosen on various geometric criteria

related to their shape such as different formulations of an aspect ratio. In time dependent

problems, it may be necessary to refine and derefine the grid after each time step in order

to follow various changing phenomena such as moving concentration fronts, shock

waves, or advancing oxide layers. These factors make mesh refinement crucial to the

practical solution of physical modeling problems. We therefore will detail several

algorithms that are currently implemented for identifying which grid elements should be

refined or derefined based on geometric and physical criteria. New algorithms will be

added to this list and the current ones modified as we obtain feed back from users.

50

Grid Refinement and Derefinement Criteria - Algorithms

I. Edges: Each edge is tested separately to see if it should be tagged for refinement or

derefinement.

Definition:
χ = a user supplied tolerance

φ(i) = value of the field variable φ at node i

= length of the edge

For the edge between nodes 1 and 2, we have

1 2

Criteria:
1) Junction: Refine if the edge’s field values straddle .

Tag for refinement if
(1) > and (2) <

or
(1) < and (2) >

example: For χ = 0, refine if φ changes sign across the edge.

2) Constant: Refine if the edge’s field values exceed .

Tag for refinement if
(1) > or (2) >

3) Maxsize: Refine if the edge length exceeds .

Tag if >

4) Minisize: Derefine if the edge length is smaller than χ.

Tag if <

5) Delta: Refine if the magnitude of the difference of the field values at the edge ends
exceeds .
Tag if (1)− (2) >

6) Lambda Refine: Refine if λ/∆X < χ. Where ∆X is a scale length (here taken to be)

and λ is given below.

51

≡
Χ c()

∇

where Χ c is the location of the edge center.

∇ =
(1)− (2)

(X c) =
1

2
(1)+ (2)

Tag if
1

2

(1)+ (2)

(1)− (2)
<

Generally λ/∆X is a quality measure of the discretization. A larger value of λ/∆X usually

indicates a better grid discretization. There are some special cases however. If one of the
field values is zero as could happen on a boundary, then λ/∆X = 1/2 always. Another

special case would be for (1) = (2) then λ/∆X is divergent but the algorithm uses a small

number ε = 1 × 10–6 added to the denominator to prevent this to give a large but finite

value of λ/∆X thus indicating a good discretization.

7) Lambda Derefine: As above for Lambda Refine except tag for derefinement if

λ
∆X

> χ

II. Faces: Each face is tested separately for refinement or derefinement. For the

tetrahedral face defined by nodes 1, 2, and 3, we have

52

φ(3)

φ(2)
φ(1)

3

21

Α

where A is the area of the face.

Criteria:
1) Junction: Refine if any of the faces’ field values straddle χ.

Tag for refinement if
(1) > and (2), (3) <

or
(2) > and (1), (3) <

or
(3) > and (1), (2) <

or all of the above with > and < interchanged.
example: For χ = 0, refine if φ changes sign between any of the three nodes.

2) Constant: Refine if any of the faces’ field values exceed χ.

Tag for refinement if
(1) > or (2) > or (3) >

3) Maxsize: Refine if the face area exceeds χ.

Tag if A > χ
4) Minisize: Derefine if the face area is less than χ.

Tag if A < χ
5) Aspect Ratio: Refine if the face’s aspect ratio is less than χ. The aspect ratio (AR) is

defined as the ratio of the radius of the inscribed circle of the triangular face

to the radius of the circumscribed circle. We renormalize this ratio of

multiplying by 2 so that the ratio equals one for an equilateral triangle.

AR = 2

Rc

RC
where Rc ≡ radius of inscribed circle

RC ≡ radius of circumscribed circle

AR is never greater than one.
Tag if AR < χ

53

Generally the smaller AR is the more elongated the face is.
6) Lambda Refine: Refine if λ/∆X < χ. Where ∆X is taken to be the radius of the

circumscribed circle RC of the triangular face

=
(X c)

∇

(X c) = 1
3 (1) + (2) + (3)

where X c is the centroid of the triangular face, and we have assumed a linear

interpolation of .

∇ is evaluated on the face by a suitable approximation involving a linear

interpolation of and ∇ ≅ 1
A (X)∫ d where the line integral is around the edge

of the face.

7) Lambda Derefine: As above for Lambda Refine except tag for derefinement if ∆Χ >

54

III. Tets: Each tetrahedron is tested separately for refinement or derefinement

4 3

21

φ(4)

φ(3)

φ(2)
φ(1)

V

where V is the volume of the tetrahedron.

Criteria:
1) Junction: Refine if any of the tet’s field values straddle .

example: For = 0 refine if changes sign between any of the four nodes.

2) Constant: Refine if any of the tet’s field values exceed .

Tag for refinement if
(1) > or (2) > or (3) > or (4) >

3) Maxsize: Refine if the tet volume exceeds .

Tag if V >

4) Minisize: Derefine if the tet volume is less than .

Tag if V <

5) Aspect Ratio: Refine if the tet’s aspect ratio is less than χ. For the tet the aspect ratio

(AR) is deferred as the ratio of the radius of the inscribed sphere of the tet to

the radius of the circumscribed sphere. We renormalize this ratio by

multiplying by three so that the ratio equals one for a regular tetrahedron

(composed of equilateral triangular faces).

AR = 3

Rs

R S
where Rs ≡ radius of inscribed sphere

RS ≡ radius of circumscribed sphere

AR is never greater than one.
Tag if AR < χ.

Generally the smaller AR is, the more elongated the tet is.
6) Lambda Refine: Refine if λ/∆X < χ. Where ∆X is taken to be the radius of the

circumscribed sphere Rs of the tet.

55

=
(X c)

∇

(X c) = 1
4 (1)+ (2) + (3) + (4)

where X c is the centroid of the tet, and we have assumed linear interpolations

of . ∇ is evaluated for the tet by a suitable approximation involving a linear

interpolation of and ∇ ≅ 1
V (X)∫ ds where the surface integral is over the

surface of the tet.

7) Lambda Derefine: As above for Lambda Refine except tag for derefinement if
∆Χ

> Χ

IV. Face Edges: Same algorithms of the Faces category except all edges of the face are

tagged for refinement or derefinement if the condition is met for the face.

V. Tet Edges: Same algorithms of the tet category except all edges of the tet are tagged

for refinement or derefinement if the condition is met for the tet.

56

 REGION

Define a geometric region from the set of surfaces by logically combining the surface

names. The operators lt, le, gt, and ge are applied to previously defined surfaces

according to the following rules.

lt -- if the surface following is a volume then lt means inside not including the surface

of the volume. If the surface is a plane or a sheet lt means the space on the side of the

plane or sheet opposite to the normal not including the plane or sheet itself.

le -- if the surface following is a volume then le means inside including the surface of

the volume. If the surface is a plane or a sheet le means the space on the side of the

plane or sheet opposite to the normal including the plane or sheet itself.

gt -- if the surface following is a volume then gt means outside not including the

surface of the volume. If the surface is a plane or a sheet gt means the space on the

same side of the plane or sheet as the normal not including the plane or sheet itself.

ge -- if the surface following is a volume then ge means outside including the surface

of the volume. If the surface is a plane or a sheet ge means the space on the same

side of the plane or sheet as the normal including the plane or sheet itself.

The operators or, and, and not applied to surfaces mean union, intersection and

complement respectively. The operators or, and, and not applied to relational operators

are the normal logical operators. The parentheses operators, (and), are used for nesting.

Spaces are required as delimiters to separate all operators and operands. Internal

interfaces should be included in exactly one region.

FORMAT:

region/region_name/region definition

EXAMPLES:

region/reg1/le sphere1 and (lt plane1 or gt plane2)

region/reg2/le sphere1 and (ge plane1 and le plane2)

 REGNPTS

Generates points in a region previously defined by the region command. The points are

generated by shooting rays through a user specified set of points from an origin point,

line, or plane and finding the intersection of each ray with the surfaces that define the

region. The point distribution is determined by the data in ptdist. If ptdist is integer,

then that many points are evenly distributed along the ray in the region. If ptdist is real,

57

then points are distributed at that distance along the ray within the region. The variables

irratio and rrz determine ratio zoning when ptdist is an integer. Ratio zoning is on

when irratio is 1, then the distribution is adjusted by the value for rrz. When irratio

is 2, the points are distributed by equal volumes depending on the geometry. When

irratio is 3, ratio zoning is calculated on the longest ray then this length distribution is

applied to all the rays. See the description of the command surface for a discussion of

point distributions with respect to sheet surfaces.

FORMAT:

regnpts/region name/ptdist/ifirst,ilast,istride/geom/

ray origin/irratio,rrz

regnpts/region name/ptdist/pset,get,setname/geom/ray origin

/irratio,rrz

Where ifirst,ilast,istride or pset,get,setname define the set of points to shoot

rays through.

EXAMPLES:

regnpts/region name/ptdist/ifirst,ilast,istride/xyz

/x1,y1,z1/x2,y2,z2/x3,y3,z3/irratio,rrz/

Where points 1, 2, 3 define the plane to shoot rays from that are normal to the plane.

regnpts/region name/ptdist/ifirst,ilast,istride/

rtz/x1,y1,z1/x2,y2,z2/irratio,rrz/

Where points 1, 2, define the line from which to shoot perpendicular rays

regnpts/region name/ptdist/ifirst,ilast,istride/

rtp/xcen,ycen,zcen/irratio,rrz

Where xcen,ycen,zcen define a point from which to shoot rays .

regnpts/region name/ptdist/ifirst,ilast,istride/points/

iffirst,iflast,ifstride/

Where iffirst,iflast,ifstride define a set of points from which to shoot rays

 RESETPTS

Reset node values. If iflag is parent (default) the parent child flags are reset. All child

points are eliminated and the connectivity list is corrected to reference only the parent

points. If iflag is itp the itp1 array is reset to indicate whether each node is in the interior

(0), on an interior interface (2), on a reflected boundary (10), or on a reflected interface

boundry (12) . Resetting itp would be used if nodes were removed (such as with rmmat)

leaving new boundaries

58

FORMAT:

resetpts/iflag

EXAMPLES:

resetpts

resetpts/parent

resetpts/itp

 RM

Removes any points that are within the specified point range and specified volume of

space. This is done in Cartesian (X, Y, Z), cylindrical (R, THETA, Z), or spherical (R,

THETA, PHI) coordinates. It should be noted that in cylindrical coordinates, theta is the

angle in the XY- plane with respect to the x-axis, while in spherical coordinates theta is

the angle with respect to the Z-axis and phi is the angle in the XY-plane with respect to

the X-axis. In cylindrical coordinates the cylinder always lines up along the z axis; use the

coordsys command before issuing the rm command if the points to be removed are not

aligned with the z-axis; then issue a final coordsys command to return to normal. Also

note that the points that are removed become dudded out (point type set to 21) and are

not removed from the data array.

The other options are:

geometry -- xyz, rtz, rtp

ifirst,ilast,istride -- point range to search

xmin, ymin, zmin -- minimums of geometry type coordinates

xmax, ymax, zmax -- maximums of geometry type coordinates

xcen, ycen, zcen -- center of removal space for geometry

xscale, yscale, zscale -- scaling factors for geometry limits

FORMAT:

rm / geometry /ifirst,ilast,istride/xmin,ymin,zmin/xmax,ymax,zmax/

xcen,ycen,zcen / [xscale,yscale,zscale]

EXAMPLE:

rm/xyz/0,0,0/2.,2.,2./4.,4.,4./0.,0.,0./

rm/rtz/0,0,0/0.,0.,0./1.,360.,10./0.,0.,0./

59

 RMMAT

Removes all points of a specified material number. This command duds out the points

(sets ipt=21) but doesn't remove them from the data array. Use edit/parts to find the

correct material numbers. To actually remove the points see the rmpoints command.

FORMAT:

rmmat / material number/

 RMPOINT

Removes a specified list of points (ifirst,ilast,istride) from a point distribution.

The first format sets the point type flag [itp=ifitpdud (21)] to indicate that the set of points

should be removed, but does not actually remove the points. The second format,

compress, compresses and material-wise resequences all appropriately flagged points.

If iflag is inclusive, any element containing a removed point is removed. IF iflag is

exclusive (default), any element containing a retained point is retained.

FORMAT:

rmpoint/ifirst,ilast,istride/ iflag

rmpoint/compress/

rmpoint/zero_volume/threshold (Elements whose volumes are less than or equal to

threshold will be removed.)

 RMREGION

Removes points that lie within the specified region.

FORMAT:

rmregion/region_name/

 RMSPHERE

Removes a sphere of points from a point distribution.

FORMAT:

rmsphere/inner_radius/outer_radius/xcen,ycen,zcen/

60

 RMSURF

Removes points that lie in, on or in and on the specified surface. ioper can be one of the

following:

lt - only points in the surface are removed

eq - only points on the surface are removed

le - all points in or on the surface are removed

FORMAT:

rmsurf/region_name/ioper

 ROTATELN

Rotates a point distribution (specified by ifirst,ilast,istride) about a line. The

copy option allows the user to make a copy of the original points as well as the rotated

points, while nocopy just keeps the rotated points themselves. The line of rotation

defined by x1 through z2 needs to be defined such that the endpoints extend beyond the

point distribution being rotated. theta (in degrees) is the angle of rotation whose positive

direction is determined by the right-hand-rule, that is, if the thumb of your right hand points

in the direction of the line (1 to 2), then your fingers will curl in the direction of rotation.

xcen,ycen,zcen is the point where the line can be shifted to before rotation takes place.

FORMAT:

rotateln /ifirst,ilast,istride/ [no] copy / x1,y1,z1/x2,y2,z2/theta/

 xcen,ycen,zcen/

 ROTATEPT

Rotates a point distribution (defined by ifirst,ilast,istride) about a point

xcen,ycen,zcen. phi (in degrees) is the angle of rotation of the XY plane around the Z-

axis, where positive phi is measured from the positive x-axis toward the positive y-axis.

theta (in degrees) is the angle of rotation toward the negative z-axis. The (no) copy

options are as described in the rotateln command.

FORMAT:

rotatept /ifirst,ilast,istride/ [no] copy / xcen,ycen,zcen/theta/phi

61

 RZ

This command adds points to the mesh. It can distribute points evenly or according to a

ratio zoning method.

xyz specifies Cartesian coordinates.

rtz specifies cylindrical coordinates.

rtp specifies spherical coordinates.

When using the rtz or rtp coordinate systems the center is at (0,0,0). Use a trans

command to move the center. For the rtz command, minimum and maximum coordinates

are the triplets: radius from the cylinder's axis, angle in the xy-plane measured from the x-

axis and height along the z-axis. For the rtp command minimum and maximum

coordinates are the triplets: radius from the center of the sphere axis, angle in the zy-

plane measured from the positive z-axis and the angle in the xy-plane measured from the

positive x-axis (see III.a.11). Note that the rtz always results in a (partial) cylinder of points

centered around the z axis. Use the rotateln command to orient the cylinder. For

example, to center the cylinder around the y axis, specify the x axis as the line of rotation

in the rotateln command.

ni,nj,nk number of points to be created in each direction.

xmin,ymin,zmin minimums for coordinates.

xmax,ymax,zmax maximums for coordinates.

iiz,ijz,ikz if =0 then mins and maxs are used as cell centers

if =1 then mins and maxs are used as cell vertices

iirat,ijrat,ikrat ratio zoning switches (0=off,1=on)

xrz,yrz,zrz ratio zoning value - distance is multiplied by this value for each

subsequent point.

FORMAT:

rz/xyz|rtz|rtp/ni,nj,nk/xmin,ymin,zmin/xmax,ymax,zmax/

iiz,ijz,ikz/[iirat,ijrat,ikrat/xrz,yrz,zrz/]

EXAMPLES:

rz/xyz/5,3,10/0.,2.,0./1.,.6,2./1,1,1/

This results in a set of 150 points, five across from x=0. to x=5., 3 deep from y=2. to y=6.

and 10 high from z=0. to z=2.

rz/rtz/4,6,11/0.,0.,0./3.,360.,10./1,0,1/

This results in 264 points arranged around the z- axis. There are 3 rings of points at

distances r=1., r=2. and r=3. from the z-axis. There are 11 sets of these three rings of

points and heights z=0., z=1., z=2.,...,z=10. In each ring there are 6 points where each

62

pair of points is separated by 60°; note that ijz=0 requests that points be placed at cell

centers, hence the first point will be at 30° not at 0°. There will be 6 points identical points

at 11 intervals along the z-axis at heights z=0., z=1., z=2.,...z=10. Filter should be used to

remove these duplicate points.

 RZBRICK

Builds a brick mesh and generates a nearest neighbor connectivity matrix. This command

is similar to the rz command format except here we have symmetry flags to input. A

second format specifies that a mesh be created and connected.

xyz specifies Cartesian coordinates.

rtz specifies cylindrical coordinates.

rtp specifies spherical coordinates.

ni,nj,nk number of points to be created in each direction.

xmin,ymin,zmin minimums for coordinates.

xmax,ymax,zmax maximums for coordinates.

iiz,ijz,ikz if =0 then mins and maxs are used as cell centers

if =1 then mins and maxs are used as cell vertices

iirat,ijrat,ikrat ratio zoning switches (0=off,1=on)

xrz,yrz,zrz ratio zoning value - distance is multiplied by the value for each

subsequent point.

name name of pstatus containing starting point number

isym,jsym,ksym

FORMAT:

rzbrick/xyz|rtz|rtp/ni,nj,nk/xmin,ymin,zmin/xmax,ymax,zmax/

iiz,ijz,ikz/[iirat,ijrat,ikrat/xrz,yrz,zrz/isym,jsym,ksym]

or

rzbrick/xyz|rtz|rtp/ni,nj,nk/pstatus,get,name/connect/

Use this option with QUADXYZ to connect logically rectangular grids.

 RZS

Builds a sphere by generating coordinates of points and also modifies zoning by ratio-

zoning point distributions. See the rz command for more details. The itype flag defines

what type of sphere will be generated.

63

itype=1 generates a sphere by gridding the faces of a cube and then projecting the

vertices onto a sphere.

itype=2 generates a sphere by subdividing an icosahedron placed on the surface of a

sphere. itype= 1 or 2 distributes points only, call search to generate connectivity

information.

nr is the number of radii

npt is the number of points total in the sphere

itype=8 generates a hexahedral icosahedron grid. This option distributes points and

generated the grid connectivity data structures.

xirad,xorad are the inner and outer radii of the sphere. For itype=8 reverse inner and

outer radii.

xcen,ycen,zcen are the coordinates of the center of the sphere

iz if =0 then mins and maxs are used as cell centers

if =1 then mins and maxs are used as cell vertices

irat is ratio zoning switch (0=off,1=on)

rz is ratio zoning value - distance is multiplied by the value for each subsequent point.

FORMAT:

rzs/itype/nr,npt,xirad,xorad/xcen,ycen,zcen/iz/irat,rz/

FORMAT:

rzs/8/5/162/1.0,0.5/0.,0.,0./1,0,0.0/

rzs/2/5/162/0.5,1.0/0.,0.,0./1,0,0.0/

 SCALE

Scale a point distribution specified by ifirst,ilast,istride according to the scale

factors iscale, jscale, and kscale. The letters i, j, and k in the scale factors

correspond to coordinates specified by one of the geometry types [xyz (Cartesian), rtz

(cylindrical), rtp (spherical)]. For example, if geometry = rtz then iscale = rscale,

jscale = tscale, and kscale = zscale. If the scaling option is relative then the

scaling factors are unitless multipliers with reference to some geometric center

(xcen,ycen,zcen). If the scaling option is absolute then the scaling factors are

consistent units added on to the existing coordinates

FORMAT:

64

scale/ifirst,ilast,istride/absolute|relative/xyz|rtz|rtp/

iscale,jscale,kscale/xcen,ycen,zcen

 SEARCH

This is the main command for generating the connectivity list.

isrchopt -

0 => Set up the mesh for specified points. If points are not specified, set up the mesh for

the entire problem. Also, remove the enclosing tetrahedron after generating the mesh.

1 => Same as 0 except do not remove tetrahedra associated with the enclosing

tetrahedron.

2 => Add specified points to the existing mesh and remove tetrahedra associated with the

enclosing tetrahedron.

3 => Add specified points to the existing mesh and do not remove tetrahedra associated

with the enclosing tetrahedron.

4 => Just remove tetrahedra associated with the enclosing tetrahedron.

FORMAT:

search/isrchopt/ifirst,ilast,istride/

 SETPTS

Sets point types and material regions by calling surfset and regset routines. Generate

constraint table.

FORMAT:

setpts

 SETTETS

Set tetrahedra color (material type). Mark interface points; create child points at interior

boundaries. Points on interior

If there are no parameters settets sets the color of all tets based on previous mregion

specification

If there are parameters, tets whose face centroids all lie within the box specified by points

1 and 2 are colored to color. Color often represents material type.

FORMAT:

settets

65

settets/color/x1,y1,z1/x2,y2,z2/

 SMOOTH

The SMOOTH Command smoothes 2D or 3D mesh objects. Adaptive smoothing (to

values of specified fields) or non-adaptive smoothing is available. In the first form, we

adapt the current mesh object to the specified field of the reference mesh object

(cmo_ref). Although the x-y-z values of -cmo- are altered by adaption, cmo_ref should

never change. Hence, to accomplish adaption using one or more fields in the current

mesh object itself, one should let cmo_ref be a copy of the current mesh object. The

user can specify one of two algorithm choices: Minimum Error Gradient Adaption (mega),

or Elliptic Smoothing for Unstructured Grids (esug) The results of adaption of the grid to

the field can be altered by using one or more field commands beforehand to modify the

field of cmo_ref . For example, by increasing the scale of a field using field/scale, the

esug algorithm option of smooth will produce grids with increased numbers of nodes in

the regions where the field experiences relatively large gradients. By volume averaging a

field using field/volavg, smooth will cause a more gentle form of adaption with a better

grading of elements. By composing the values of the field with log or asinh using

field/compose, one can cause smooth to shift nodes to where the logarithm (or

hyperbolic arcsine) of the field has interesting features, rather than where the field itself

has interesting features. In the second form of adaptive smoothing the user supplies a

subroutine call fadpt. In this case the seventh argument to the smooth command is the

keyword user.

Subroutine fadpt(x,y,z,nvec,time,f)
PURPOSE-

Adaption function for smoothing algorithms. (Replace this code with a user-
supplied function for nontrivial smoothing.) This default function should create a
uniform grid when used with mega type smoothing.

INPUT ARGUMENTS -
x,y,z - Input spatial coordinate arrays.
nvec - Length of spatial arrays.
time - Current time (for time dependent adaption).

OUTPUT ARGUMENTS -
 f- Array of adaption function values.

66

In the third form of the smooth command, we perform non-adaptive smoothing on the

specified point set, using either mega or esug. You can specify an optional control

value between zero and one. The default (control=0.) results in the standard smoothing

scheme. Increasing control towards 1. causes the scheme to be progressively more

controlled (moving the mesh less), until at control=1, there is no mesh movement

whatsoever. By default, the second argument is POSITION. This results in the positions

of the nodes being changed. set,add,sub are reserved for future implementation of

smoothing using node velocities.

FORMAT:

smooth/position|set|add|sub /mega|esug/ifirst,ilast,istride/cmo_ref/field/

smooth/position|set|add|sub/mega|esug/ifirst,ilast,istride/user/

smooth/position|set|add|sub/mega|esug/ifirst,ilast,istride/control/

EXAMPLES:

1. Smooth the positions of all the nodes in the mesh (Here, missing arguments are

supplied default values.)

SMOOTH

2. Smooth all nodes in the mesh, using controlled smoothing with control = 0.5

SMOOTH///1,0,0/0.5

3. Adaptively smooth interior nodes in the mesh using user-supplied FADPT subroutine.

PSET/interior/ZQ/ITP/1,0,0/0
SMOOTH///PSET,GET,interior/USER

4. Copy 2dmesh to 2dmesh_ref.

Normalize density field to have values of order unity. Adapt 2dmesh to normalized

density field values in 2dmesh_ref.

CMO/COPY/2dmesh_ref/2dmesh

FIELD/SCALE/NORMALIZE/1.0/1,0,0/density

CMO/SELECT/2dmesh

SMOOTH///1,0,0/2dmesh_ref/density

67

 SURFACE

Defines a boundary surface of the type specified in ibtype.

ibtype can be free, intrface, reflect,intrcons or virtual. Use reflect or free for external

boundaries, intrface for interior interfaces, intrcons for constrained interior interfaces.

Use virtual for virtual interfaces.

The surface is defined by istype and X1 through Z4.

istype can be plane, box, parallel(piped), sphere, cylinder, cone, ellipse(oid), tabular

(rotated tabular profile), or sheet.

X1 through Z4 are specified with the surface type in mind.

isurname is the name of the surface and must be unique for each surface defined by

surface.

FORMAT:

surface/isurname/ibtype/istype/x1/y1/z1/x2/y2/z2/x3/y3/z3/x4/y4/z4/

surface/isurname/ibtype/sheet/cmo_name/

EXAMPLES:

surface/isurname/ibtype/box/xmin,ymin,zmin/xmax,ymax,zmax/

surface/isurname/ibtype/cone/x1,y1,z1/x2,y2,z2/radius/

Where point 1 is the vertex and point 2 is the top center of the cone with radius from that

point. A cone is finite but open. To create a closed cone cap the open end with a plane.

surface/isurname/ibtype/cylinder/x1,y1,z1/x2,y2,z2/radius/

Where point 1 is the bottom center and point 2 is the top center of the cylinder. Cylinders

are open but finite To create a closed cylinder cap both ends with planes.

surface/isurname/ibtype/ellipse/x1,y1,z1/x2,y2,z2/x3,y3,z3/ar,br,cr/

Where point 1 is the center of the ellipsoid and point 2 is on the a semi-axis (new x), point

3 is on the b semi-axis (new y), and ar, br, cr are radii on their respective semi-axes.

surface/isurname/ibtype/parallel/x1,y1,z1/x2,y2,z2/x3,y3,z3/x4,y4,z4/

Where points 1, 2, 3 are the front left, front right and back left points of the base and point

4 is the upper left point of the front face.

surface/isurname/ibtype/plane/x1,y1,z1/x2,y2,z2/x3,y3,z3

surface/isurname/ibtype/planexyz/x1,y1,z1/x2,y2,z2/x3,y3,z3

the direction of the normal to the plane is determined by the order of the points according

to the right hand rule.

surface/isurname/ibtype/planertz/radius1,theta1,z1,

radius2,theta2,z2,radius3,theta3,z3,xcen,ycen , zcen/

68

surface/isurname/ibtype/planertp/radius1,theta1,phi1,

radius2,theta2,phi2, radius3,theta3,phi3, xcen,ycen,zcen/

surface/isurname/ibtype/sheet/cmo_name/

Sheet surfaces may be input by specifying a cmo_name. The Mesh Object must be either

a 2D quad Mesh Object or a 2D triangle Mesh Object.

Inside/outside with respect to sheet surfaces will be determined by the following

algorithm:

• For the point being considered, p, find the nearest sheet triangle and the closest

point, q, to p that lies on that triangle.

• Construct the vector, d , from q to p.

• Construct the outward normal to the triangle, n . The outward normal is

constructed using the right hand rule and the order of the points in the sheet.

Sheets may be specified as quad Mesh Object (i.e. a 2 dimensional array of points

containing the coordinates of the corners of each quad). Either two triangles

(divide each quad in two using point (i,j) and (i+1,j+1)) or four triangles (add a point

in the center of the quad) are generated by each quad. Applying the right hand

rule to the points (i,j), (i+1,j), (i+1,j+1) gives the direction of the normal for all

triangles created from the quad.

• If d • n < 0 then the point is inside. If d • n >0 the point is outside. If d n • n = 0,

and if p is on the triangle then p=q and p in on the triangle.

69

• If d •n = 0 and p is not on the triangle then p is outside.

p1 is outside
p2 is inside
p3 is outside

•

•

•

• ••
np1

q1

p2

q2
p3q3

One implication of this definition is that the concept of shadows cast by open sheets no

longer is valid. Sheets may be considered to extend to the boundary of the geometry.

6

7

8

9

3

4

5
1

2

direction of outward normal

points 1, 5, 3, 6 are outside
points 2, 4, 7, 8 and 9 are inside

surface/isurname/ibtype/sphere/xcen,ycen,zcen/radius/

surface/isurname/ibtype/tabular/x1,y1,z1/x2,y2,z2/geom/

r1,z1

70

r2,z2

r3,z3

....

rn,zn

end

or

r1,theta1

r2,theta2

r3,theta3

...

rn,thetan

end

Where point 1 and point 2 define the axis of rotation for the tabular profile with point 1 as

the origin. This is followed by pairs of profile descriptors depending on the value of geom.

If geom is set to rz, then the r value is a radius normal to the axis of rotation and z is the

distance along the new axis of rotation. If geom is set to rt then theta is the angle from

the axis of rotation at point 1 and r is the distance from point 1 along theta. The first pair

must start on a new line and all lines must contain pairs of data. The last pair of data

must be followed by end.

 SURFPTS

Generates points on boundary surfaces previously defined by the surface or region

command. The variable itype can be surface or region and iname is the name of the

surface or region. The points are generated by shooting rays through a user specified set

of points from an origin point, line or plane and finding the surface intersection of each

ray. The point location for a region is determined by iregpt and can be on the inside,

outside or both surfaces.

FORMAT:

surfpts/itype/iname/iregpt/ifirst,ilast,istride/geom/ray_origin

surfpts/itype/iname/iregpt/pset,get,setname/geom/ray_origin

Where ifirst,ilast,istride or pset,get,setname define the set of points to shoot

rays through.

SPECIFICALLY FOR ALLOWABLE GEOMETRY TYPES:

71

surfpts/itype/iname/iregpt/ifirst,ilast,istride/

xyz/x1,y1,z1/x2,y2,z2/x3,y3,z3/

Where points 1, 2, 3 define the plane to shoot rays from that are normal to the plane.

surfpts/itype/iname/iregpt/ifirst,ilast,istride/ rtz/x1,y1,z1/x2,y2,z2 /

Where points 1, 2, define the line to shoot rays from that are perpendicular to the line.

surfpts/itype/iname/iregpt/ifirst,ilast,istride/ rtp/xcen,ycen,zcen/

surfpts/itype/iname/iregpt/ifirst,ilast,istride/ points

/iffirst,iflast,ifstride/

Where ifirst,ilast,istride define a set of points to shoot rays from.

 TRANS

Translates a selected set of points (ifirst,ilast,istride) in X,Y,Z space by picking

one specific point (xold,yold,zold) in the set of points and moving it to new

coordinates (xnew,ynew,znew) with a linear translation. This will then cause the

remaining points in the set to be moved by the same translation.

FORMAT:

trans/ifirst,ilast,istride/xold,yold,zold/xnew,ynew,znew

EXAMPLE:

trans/pset,get,mypoints/0.,0.,0./2.0,2.0,0./

The points in the pset mypoints will be moved 2 in the positive x direction and 2 in the

positive y direction.

 ZQ

Set or print node attribute values of a selected set of nodes.

To print, omit the ‘value’ field.

For printing, attributes are grouped as follows:

Group1: isq,imt,itp (material type and point types)

Group2: x,y,z (coordinates)

To print, specify any one of a group and all will be printed.

To set an attribute value, set value and all selected nodes will be set to this value.

Attribute added with a cmo/addatt command may also be printed or changed.

FORMAT:

zq/iattribute/ifirst,ilast,istride/value

72

EXAMPLE:

zq/imt/1,100,2/material1/

will set all odd numbered points between 1 and 100 to material type ‘material 1’

zq/xic/1,0,0/

will print coordinates of all points

73

IV. Interfacing User Routines to X3D

a. Building an executable and running X3D.

The executable is built by linking a driver routine with the code and utility libraries.

The driver routine must contain a call to initx3d and a call to dotaskx3d and must

contain a subroutine called user_sub. A sample driver routine is listed:

 program adrivgen
C
C
##
C
C PURPOSE -X3D driver
C
##
C
 implicit real*8 (a-h,o-z)
C
 call initx3d('generate','noisy',' ',' ')
C
 call dotaskx3d('interact',ierror_return)
C
 stop
 end
C
 subroutine user_sub(imsgin,xmsgin,cmsgin,msgtyp,nwds,
 x ierr1)
C
##
C
C PURPOSE -
C
C Process user supplied commands
C
C INPUT ARGUMENTS -
C
C imsgin - integer array of tokens returned by parser
C xmsgin - real array of tokens returned by parser
C cmsgin - character array of tokens returned by parser
C msgtyp - int array of token types returned by parser
C nwds - number of tokens returned by parser
C
C OUTPUT ARGUMENTS -
C
C ierr1 - 0 for successful completion - -1 otherwise
C
##
 character*32 cmsgin(nwds)
 integer imsgin(nwds),msgtyp(nwds)

74

 integer nwds,ierr1,lenc
 real*8 xmsgin(nwds)
C get command length
 lenc=icharlnf(cmsgin(1))
C set default error return to fail
 ierr1=-1
C Insert code here to handle user coded subroutines
C For example
C if(cmsgin(1)(1:lenc).eq.'my_cmnd') then
C call my_rtn(imsgin,xmsgin
C * cmsgin,msgtyp,nwds,ierr1)
C else
C ierr1=-1
C endif
C
 return
 end

Sample build scripts for the supported platform are:

Sun OS and Sun Solaris

f77 -g -o x3dgen adrivgen.f libx3d.a libutil.a

IBM RISC

f77 -g -o x3dgen -qintlog -brename:.fdate,.fdate_ adrivgen.f
 libx3d.a libutil.a

SGI

f77 -g -Nn10000 -o x3dgen adrivgen.f libx3d.a libutil.a

HP
f77 -g +U77 -R8 -o x3dgen adrivgen.f libx3d.a libutil.a

Once the executable is built, the dictionary file must be installed. This file, x3ddict, is

supplied with the libraries. It must either exist in the directory from which X3D will be

run, or an environment variable may be set to give the directory path to its location.

The format of the setenv command is:

setenv x3ddict full_directory_path_to_x3ddict.

To execute, use standard unix file redirection for standard input and output. X3D will

produce two additional files, outx3dgen and logx3dgen. These contain detailed

output information and the list of commands respectively. X3D may also be run

interactively in which case the user will be prompted to enter commands from the

workstation.

b. Issuing Commands from a user program.

Any X3D command can be issued by calling the subroutine dotaskx3d, for example:

call dotaskx3d('cmo/select/3dmesh', ier1)

75

will select the Mesh Object named 3dmesh. ier1 will be zero if the commands are

executed with no error, non-zero otherwise.

By using the X3D command infile, a series of commands may be executed, for

example

call dotaskx3d('infile/mydeck', ier1)

will execute all the X3D commands that are in the user's file named mydeck. The final

command in the file mydeck should be finish.

c. Writing user commands

The access to user written subroutines is through the X3D subroutine, user_sub. It is

passed the parsed command input line. The parser breaks up the input line into

tokens and returns to X3D a count of number of tokens, an array containing the token

types, and the tokens themselves. The parameters returned by the parser are:
nwds (number of tokens)
msgtyp (integer array of token types - 1 for integer, 2 for real, 3 for

character, msgtyp(nwds+1) = -1)
imsgin (array of integer tokens, e.g. imsgin(i) is the ith token which is an

integer if msgtyp(i)=1)
xmsgin (array of real tokens)
cmsgin (array of character tokens)

Null fields are given the integer value 0, real value 0. and character value '-def-'. The

parser is written in C, therefore character variables returned will be null terminated on

some platforms. A FORTRAN function is supplied; icharlnf will return the length of

the character string blank or null terminated, ignoring leading blanks

If the user has written a subroutine, my_routine, that responds to the command,

my_comnd, the call from user_sub should look like:

elseif (cmsgin(1)(1:lenc).eq. 'my_comnd')

x call my_routine(nwds,imsgin,xmsgin,cmsgin,msgtyp.ierr1)

The subroutine my_routine should set ierr1 to zero if the command is processed

successfully and should use the cmo interface routines to access the components of

the Mesh Object that it needs, for example:

character*32 cmo
pointer (ipimt1, imt1(*))

c get the name of the current mesh object
call cmo_get_name(cmo_name,ierror)

c get the number of nodes and the material ids
call cmo_get_info('nnodes',cmo_name,nnodes,ilen,ityp,ierr)
call cmo_get_info('imt1',cmo_name,ipimt1,ilen,ityp,ierr)

76

The subroutine user_sub is supplied with the driver and is defaulted to print

the error message: 'Illegal command' and return.

d. The following template is an example of using the an existing mesh object and

of creating a new mesh object. The existing mesh object is a 3d object. The

object to be created is a 2d object. It is first necessary to set up the pointer

statements for both the existing and new mesh objects.

C Definitions for incoming (existing) cmo
C
 pointer (ipimt1, imt1)
 pointer (ipitp1, itp1)
 pointer (ipicr1, icr1)
 pointer (ipisn1, isn1)
 integer imt1(1000000), itp1(1000000),
 * icr1(1000000), isn1(1000000)
 pointer (ipxic, xic)
 pointer (ipyic, yic)
 pointer (ipzic, zic)
 dimension xic(1000000), yic(1000000), zic(1000000)
 pointer (ipitetclr, itetclr)
 pointer (ipitettyp, itettyp)
 pointer (ipitetoff, itetoff)
 pointer (ipjtetoff, jtetoff)
 pointer (ipitet, itet)
 pointer (ipjtet, jtet)
 integer itetclr(1000000), itettyp(1000000),
 * itetoff(1000000), jtetoff(1000000)
 integer itet(4,1000000) , jtet(4,1000000)
C
C Definitions for cmo that is to be created
C
 pointer (ipimt1a, imt1a)
 pointer (ipitp1a, itp1a)
 pointer (ipicr1a, icr1a)
 pointer (ipisn1a, isn1a)
 integer imt1a(1000000), itp1a(1000000),
 * icr1a(1000000), isn1a(1000000)
 pointer (ipxica, xica)
 pointer (ipyica, yica)
 pointer (ipzica, zica)
 dimension xica(1000000), yica(1000000), zica(1000000)
 pointer (ipitetclra, itetclra)
 pointer (ipitettypa, itettypa)
 pointer (ipitetoffa, itetoffa)
 pointer (ipjtetoffa, jtetoffa)
 pointer (ipiteta, iteta)
 pointer (ipjteta, jteta)
 integer itetclra(1000000), itettypa(1000000),
 * itetoffa(1000000), jtetoffa(1000000)

77

 integer iteta(3,1000000) , jteta(3,1000000)

C Get the existing cmo - its name is in the variable cmoin
C
 call cmo_get_name(cmoin,ier)
C
C Get the scalar mesh variables
 call cmo_get_info('nnodes',cmoin,npoints,lencm,itypcm,ier)
 call cmo_get_info('nelements',cmoin,ntets,lencm,itypcm,ier)
 call cmo_get_info('ndimensions_topo',cmoin,ndt,lencm,itypcm,ier)
 call cmo_get_info('ndimensions_geom',cmoin,ndg,lencm,itypcm,ier)
 call cmo_get_info('nodes_per_element',cmoin,npe,lencm,itypcm,ier)
 call cmo_get_info('faces_per_element',cmoin,nfpe,lencm,itypcm,ier)
 call cmo_get_info('mbndry',cmoin,mbndry,lencm,itypcm,ier)
C
C Get pointers to the vector variables
 call cmo_get_info('ialias',cmoin,ipialias,lenialias,ictype,ier)
 call cmo_get_info('imt1',cmoin,ipimt1,lenimt1,ictype,ier)
 call cmo_get_info('itp1',cmoin,ipitp1,lenitp1,ictype,ier)
 call cmo_get_info('icr1',cmoin,ipicr1,lenicr1,ictype,ier)
 call cmo_get_info('isn1',cmoin,ipisn1,lenisn1,ictype,ier)
 call cmo_get_info('xic',cmoin,ipxic,lenxic,ictype,ier)
 call cmo_get_info('yic',cmoin,ipyic,lenyic,ictype,ier)
 call cmo_get_info('zic',cmoin,ipzic,lenzic,ictype,ier)
 call cmo_get_info('itetclr',cmoin,ipitetclr,lenitetclr,ictype,ier)
 call cmo_get_info('itettyp',cmoin,ipitettyp,lenitettyp,ictype,ier)
 call cmo_get_info('itetoff',cmoin,ipitetoff,lenitetoff,ictype,ier)
 call cmo_get_info('jtetoff',cmoin,ipjtetoff,lenjtetoff,ictype,ier)
 call cmo_get_info('itet',cmoin,ipitet,lenitet,ictype,ier)
 call cmo_get_info('jtet',cmoin,ipjtet,lenjtet,icmotype,ier)
C
C Create the new 2d cmo - call it cmoout.
C
 call cmo_exist(cmoout,ier)
C
C ier.eq.0 means that the cmo already exists - if so release it.
C
 if(ier.eq.0) call cmo_release(cmoout,idelete)
C
C Set active cmo to cmoout
 call cmo_set_name(cmoout,ier)
C
C set scalar mesh variables
C
 call cmo_set_info('nnodes',cmoout,npoints,1,1,ier)
 call cmo_set_info('nelements',cmoout,ntets,1,1,ier)
C
C the following scalars need to be set for a 2d cmo
C
 call cmo_set_info('ndimensions_topo',cmoout,2,1,1,ier)
 call cmo_set_info('ndimensions_geom',cmoout,3,1,1,ier)
 call cmo_set_info('nodes_per_element',cmoout,3,1,1,ier)
 call cmo_set_info('faces_per_element',cmoout,3,1,1,ier)

78

C
C allocate memory for vector variables
 call cmo_newlen(cmoout,ier)
C
C now get the pointers to the allocated memory for the vector data
 call cmo_get_info('imt1',cmoout,ipimt1a,lenimt1a,icmotype,ier)
 call cmo_get_info('itp1',cmoout,ipitp1a,lenitp1a,icmotype,ier)
 call cmo_get_info('icr1',cmoout,ipicr1a,lenicr1a,icmotype,ier)
 call cmo_get_info('isn1',cmoout,ipisn1a,lenisn1a,icmotype,ier)
 call cmo_get_info('xic',cmoout,ipxica,lenxica,icmotype,ier)
 call cmo_get_info('yic',cmoout,ipyica,lenyica,icmotype,ier)
 call cmo_get_info('zic',cmoout,ipzica,lenzica,icmotype,ier)
 call cmo_get_info('itetclr',cmoout,ipitetclra,lenclra,icmotype,ier)
 call cmo_get_info('itettyp',cmoout,ipitettypa,lentypa,icmotype,ier)
 call cmo_get_info('itetoff',cmoout,ipitetoffa,lenoffa,icmotype,ier)
 call cmo_get_info('jtetoff',cmoout,ipjtetoffa,lenoffa,icmotype,ier)
 call cmo_get_info('itet',cmoout,ipiteta,leniteta,icmotype,ier)
 call cmo_get_info('jtet',cmoout,ipjteta,lenjteta,icmotype,ier)
C
C now the values for the vector components of the 2d mesh
C object can be set.

79

e. Utility subroutines

The following subroutines are available to code developers who wish to add modules

to X3D. In the subroutine definitions that follow, input arguments are underlined.

1. Memory Manager

X3D uses dynamic memory allocation. Memory is referenced by a two part name,

block name and partition name. It is allocated in integer or real blocks. Each memory

block is preceeded by a header and terminated by a trailer. The memory manager

always returns the pointer to the data section of the memory block. Length is specified

in words. Type indicates if the words are integer or real. Different platforms will have

different values for integer and real word lengths. These machine dependent values

are collected in the include file machine.h.

Allocate a block of memory:

mmgetblk(blkin , prtin ,iadr, length , itype ,icscode)

blkin block name of memory block

prtin partition name of memory block

iadr pointer to memory block (data section)

length number of words to be allocated

itype 1 for integer, 2 for real

icscode return code, 0 for no errors

Release a block of memory:

mmrelblk(blkin , prtin ,iadr,icscode)

iadr is not used

Release a partition of memory -- all blocks belonging to this partition will be

released:

mmrelprt(prtin ,cscode)

Increrment a block of memory:

mmincblk(blkin , prtin ,iadr, increment ,icscode)

increment number of words to increment memory block

Find pointer to a block of memory:

mmfindbk(blkin , prtin ,iadr,length,icscode)

iadr pointer to memory block (data)

length number of words allocated

Return type of a block of memory:

mmgettyp(ipin, itypout,icscode)

80

ipin pointer to memory block (data)

itypout type of data 1 for integer, 2 for real

Return number of words in a block of memory:

mmgetlen(ipin, lenout,icscode)

lenpout number of words in a memory block

Return name ofa block of memory:

mmgetnam(ipin, blkout,prtout,icscode)

blkout block name

prtout partition name

Print a dump of allocated memory. This is useful for debugging purposes; the

dump is listed in two parts, by time of allocation and by increasing pointer

address:

mmprint()

Verify memory integrity. Print debug information if the memory block headers or

trailers have been overwritten.

mmverify()

2. Mesh Object

cmo_create(cmo-name ,ierror)

Create a new mesh object called name

cmo-name name of new mesh object

ierror error return - 0 if no errors

cmo_get_info(ioption , cmo-name, iout,lout,itype,ierror)

Get values of scalar attribute of the mesh object. Get pointers to

vector attributes

ioption name of mesh object attribute whose value is to be

retrieved; the information retrieved may be one of

these key words or it may be the name of a user

supplied attribute (generated by a cmo_addatt

command):

number_of_attributes

nnodes (number of nodes in the mesh)

nelements (number of elements in the mesh)

nfaces (number of unique topological facets)

nedges (number of unique edges in mesh) --

mbndry (boundary node flag value)

ndimensions_topo (topological dimensionality)

81

ndimensions_geom nodes_per_element

edges_per_element

faces_per_element

isetwd (pset membership information)

ialias (alternate node numbers)

imt1 (node material)

itp1 (node type)

icr1 (constraint numbers for nodes)

isn1 (child, parent node correspondence)

ign1 (igeneration numbers for nodes)

xic, yic, zic (node coordinates)

itetclr (integer array of element material)

itettyp (geometry of element)

xtetwd (eltset membership information)

itetoff (index into itet array for an element)

jtetoff (index into jtet array for an element)

itet (node vertices for each element)

jtet (element connectivity)

cmo-name name of mesh object to be retrieved

iout value of attribute if the attribute is a scalar or a

pointer to the attribute if the attribute is a vector

lout length of retrieved attribute

itype type of attribute (1= integer, 2=real, 3=character)

ierror return flag (0 if no errors)

cmo_set_info(ioption , cmo-name,data , lin , itype ,ierror)

Set values of scalar attribute of the mesh object. Vector attributes

are set by filling arrays pointed to by the vector

attribute pointer

ioption lattribute name

data value of attribute of the salar attribute to be set

lin length of attribute (1 for scalars)

itype type of attribute (1= integer, 2=real, 3=character)

cmo_get_name(cmo-name,ierror)

Get the name of the current mesh object.

cmo-name name of current mesh object

cmo_set_name(cmo-name ,ierror)

82

Set the name of the current mesh object.

cmo_get_attribute_name(cmo-name , attribute-index ,attribute-name,ierror)

This routine is useful when looping through all the attributes of a

mesh object. To get the number of attributes use

cmo_get_info('number_of_attributes',...

attribute-index number of attribute

attribute-name name of retrieved attribute

cmo_newlen(cmo-name ,ierror)

Adjust memory associated with mesh object. Must be called

whenever the size of the mesh is adjusted in order to

provide memory to the pointered attributes.

cmo_release(cmo-name ,ierror)

Release a mesh object called cmo-name and release its memory

cmo-name name of mesh object

ierror error return - 0 if no errors

get_info_c(parameter-name,cmo-name ,' sbcmoprm','default' ,cdata,ierror)

get_info_i(parameter-name,cmo-name ,' sbcmoprm','default' ,idata,ierror)

get_info_r(parameter-name,cmo-name ,' sbcmoprm','default' ,rdata,ierror)

Retrieve a mesh object parameter value: 'c' retrieve character

data, 'i' integer data and 'r' real data.

parameter-name name of mesh object parameter

cmo-name name of mesh object

cdata,idata,rdata value of parameter

ierror error return - 0 if no errors

3. Point Selection

getptyp(point_type_name ,point_type,ierror)

This routine converts point type names to point types.

 See II.a for a list of point types, names and meanings

 point_type_name name of point type

point_type value of point type

unpackpc(npoints , itp , isn ,iparents)

This routine returns in the array iparents the parent point

corresponding to each child point i, if point i is a child

point. Ordinary points are their own parents.

npoints number of nodes

83

itp1 array of point types

isn1 array of parent child links

iparents array of parent node number for each point that is a

child point. - zero otherwise

unpacktp(ioptitp , iopt2 , inum , ipitp1 ,ipitp2,ierror)

This routine sets, or's in, or and's in (depending on iopt2) a 1 in

the array pointed to by ipit2 for each point that fits the

criterion specified by ioptitp. A zero is set, or'd or

and'd otherwise.

ioptitp criterion

allreal (0≤itp1(i)≤19)

interior (itp1(i)=0)

inteintf (itp1(i)=2,3,4)

matlintr (itp1(i)=2,4,8,9,12,13,15,19)

boundary (8≤itp1(i)≤19)

reflect (itp1(i)=9,10, 12, 14, 15,16,18,19)

free (itp1(i)=8,9,11, 13, 14, 15,17,18)

intrface (itp1(i)=2,3,4,8,9,12,

13,15,16,17,18,19)

virtual (itp(i)=3,4,8,9,16,17,18,19)

removed (20≤itp1(i)≤29)

merged (itp1(i)=20)

dudded (itp1(i)=21)

iopt2 operation

set set itp2 to 1 or 0

or or in a 1 or 0 in itp2

and and in a 1 or 0 in itp2

inum number of nodes in itp1 array

ipitp1 pointer to array of point types

ipitp2 pointer to output array of 1's or 0's (length inum)

4. Character Length

Because X3D uses a parser written in C whereas most other modules are written in

FORTRAN, the user must be very careful in using character comparison. Some

character strings will be terminated with a blank (FORTRAN) and some by a null (C).

84

The following functions are provided to return character string length (number of

characters in iword ignoring terminator character).

 icharln(iword) Search for terminating blank or null.

icharlnf(iword) Ignore leading blanks then search for terminating blank or null.

icharlnb(iword) Search backwards for first blank or null - uses FORTRAN

function len to give starting point (this is a risky assumption)

5. Retrieving Point Sets and Element Sets

eltlime returns an array of element numbers where the elements belong to the eltset

given in the argument list. Eltsets must be specified by name. On return the array

pointed to by ipmpary will contain the mpno element numbers that belong to the

eltset.

 eltlimc(ich1 , ich2 , ich3 , ipmary , mpno , ntets , xtetwd)

ich1,ich2,ich3 eset,get,eltset_name

ipmpary pointer to array of elements of eltset_name

mpno number of elements in eltset_name

ntets numer of elements in mesh object

xtetwd array of eltset membership information

pntlimc,pntlimn return an array of node numbers where the nodes belong to the pset

given in the argument list. On return the array pointed to by ipmpary will contain

mpno node numbers. These numbers are the nodes that belong to the pset.

 pntlimc(ich1 , ich2 , ich3 , ipmary , mpno , npoints , isetwd , itp1)

ich1,ich2,ich3 pset,get,pset_name

ipmpary pointer to array of node number of pset_name

mpno number of nodes in pset_name

npoints numer of nodes in mesh object

isetwd array of pset membership information

itp1 array of point types

pntlimn(ich1 , ich2 , ich3 , ipmary , mpno , npoints , isetwd , itp1)

ipt1,ipt2,ipt 3 first node, last node, stride

6. Array CompressionThe following utility routines compress arrays. Note that the

output array may be the same as the input array in which case the compression is

done in place. Also the mask array may be the same as the input array. The name

suffixes of the compression routine may be decoded as m minus (negative), n non-

zero, p positive, z equal to zero. If the routine name ends in rrr, the mask, input and

85

output arrays are all real. If the name ends in a singe r , the mask is real, the input and

output arrays are integers. Otherwise the mask, input and output arrays are all

integers. For example kmprsn(100,int,1,int,1,int,1,num) will compress all the zeros out

of array int.

kmprsm(n , z , iz , x , ix ,,y, iy ,count)

n length of z and x

z array of masks

iz stride in z

x array of source

ix stride in x

y array of output

iy stride in y

count length of y

kmprsn(n , z , iz , x , ix ,,y, iy ,count)

kmprsnr(n , z , iz , x , ix ,,y, iy ,count)

kmprsnrrr(n , z , iz , x , ix ,,y, iy ,count)

kmprsp(n , z , iz , x , ix ,,y, iy ,count)

 kmprspr(n , z , iz , x , ix ,,y, iy ,count)

kmprsz(n , z , iz , x , ix ,,y, iy ,count)
kmprszr(n , z , iz , x , ix ,,y, iy ,count)

86

X3D REFERENCES:

GEOMETRY

Khamayseh, Ahmed; Ortega,Frank; Trease, Harold, "Ray Tracing for Point Distribution in
Unstructured Grid Generation", LA-UR-95-4470.

Khamayseh, Ahmed; Ortega,Frank; Kuprat, Andrew, "A Robust Point Location algorithm for
General Polyhedra", Journal of Computer Aided Geometric Design, LA-UR-95-4465

2-D VORONOI GRIDS:

Trease, H.E. (1981), "A Two-Dimensional Free Lagrangian Hydrodynamics Model," Ph.D.
Thesis, University of Illinois, Urbana-Champaign.

3-D VORONOI GRIDS:

Trease, H.E. "Three-Dimensional Free Lagrangian Hydrodynamics," Proceedings of the first
Free-Lagrange Conference, Lecture Notes in Physics, Springer-Verlag, Vol. 238, pp. 145-
157, 1985.

3-D MEDIAN GRIDS (X3D):

Fraser D., "Tetrahedral Meshing Considerations for a Three-Dimensional Free-Lagrangian
Code,", Los Alamos National Laboratory report, LA-UR-88-3707, 1988.

Sahota, M.S., "Delaunay Tetrahedralization in a Three-Dimensional Free-Lagrangian
Multimaterial Code,", Proceedings of the Next Free-Lagrange Conference, Jackson Lake
Lodge, Wyoming, June 3-7, 1990, Springer-Verlag Press, Vol. 395, pp. 130-138.

Ahmed Khamayseh, Andrew Kuprat, and Frank Ortega, "A Robust Point Location Algorithm
for General Polyhedra," (to appear in Computer Aided Geometric Design)

3-D UNSTRUCTURED TETRAHEDRAL GRID RECONNECTION ALGORITHMS (X3D):

Trease, H.E. "Three-Dimensional Free Lagrangian Hydrodynamics," Proceedings of the first
Free-Lagrange Conference, Lecture Notes in Physics, Springer-Verlag, Vol. 238, pp. 145-
157, 1985.

Fraser D., "Tetrahedral Meshing Considerations for a Three-Dimensional Free-Lagrangian
Code,", Los Alamos National Laboratory report, LA-UR-88-3707, 1988.

Painter, J.W. and Marshall, J.C., "Three-Dimensional Reconnection and Fluxing Algorithms,"
Proceedings of the Next Free-Lagrange Conference, Jackson Lake Lodge, Wyoming, June
3-7, 1990, Springer-Verlag Press, Vol. 395, pp. 139-148.

87

Trease, H.E. "Parallel Nearest Neighbor Calculations," Proceedings of the first Free-
Lagrange Conference, Lecture Notes in Physics, Springer-Verlag, Vol. 395, pp. 149-156,
1985.

DIFFUSION EQUATION COUPLING COEFFICIENT CALCULATIONS (X3D):

Trease, H.E. "Three-Dimensional Free Lagrangian Hydrodynamics," Proceedings of the first
Free-Lagrange Conference, Lecture Notes in Physics, Springer-Verlag, Vol. 238, pp. 145-
157, 1985.

Sahota, M.S., "An Explicit-Implicit Solution of the Hydrodynamic and Radiation Equations,",
Proceedings of the Next Free-Lagrange Conference, Jackson Lake Lodge, Wyoming, June
3-7, 1990, Springer-Verlag Press, Vol. 395, pp. 57-65.

Trease, H.E. and Dean, S.H., "Thermal Diffusion in the X-7 Three-Dimensional Code,"
Proceedings of the Next Free-Lagrange Conference, Jackson Lake Lodge, Wyoming, June
3-7, 1990, Springer-Verlag Press, Vol. 395, pp. 193-202.

UNSTURCTURED GRID SMOOTHING ALGORITHMS:

Ahmed Khamayseh and Andrew Kuprat, "Anisotropic Smoothing and Solution Adaption for
Unstructured Grids," LA-UR-95-2205, International Journal for Numerical Methods in
Engineering, (submitted).

Kuprat, Andrew, "Adaptive Smoothing Techniques for 3-D Unstructured Meshes", LA-UR-96-
1116.

Kuprat, Andrew, et al. "Moving Adaptive Unstructured 3-D Meshes in Semiconductor Process
Modeling Applications", VLSI Journal, LA-UR-95-4128.

UNSTRUCTURED GRID ADAPTIVE MESH REFINEMENT (AMR):

Trease, H.E., "Adaptive Mesh Refinement (AMR) On Unstructured Tetrahedral Grids", to be
published.

